Skip to main content
Erschienen in: Topics in Catalysis 12-13/2018

11.05.2018 | Original Paper

Graphite Oxide-TiO2 Nanocomposite Type Photocatalyst for Methanol Photocatalytic Reforming Reaction

verfasst von: Katalin Majrik, Árpád Turcsányi, Zoltán Pászti, Tamás Szabó, Attila Domján, Judith Mihály, András Tompos, Imre Dékány, Emília Tálas

Erschienen in: Topics in Catalysis | Ausgabe 12-13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphite-oxide/TiO2 (GO/TiO2) composite materials were prepared by heterocoagulation method from Brodie’s graphite-oxide (GO) in order to test them as catalysts in the methanol photocatalytic reforming reaction in liquid phase. The preparation of the composite itself resulted in only little changes in the structure of GO as it was indicated by attenuated total reflection infrared (ATR-IR) and 13C magic-angle spinning nuclear magnetic resonance (13C MAS NMR) spectroscopic measurements. However, during the photocatalytic reaction, all of the GO/TiO2 samples darkened strongly indicating structural changes of GO. X-ray photoelectron spectroscopy along with NMR confirmed the loss of oxygen functionalities and emergence of graphitic species in the samples recovered from the photocatalytic reaction. Model experiments were designed to identify the key factors determining the activity of the GO/TiO2 derived photocatalysts. It was found that the emergence of a pronounced coupling between TiO2 and the graphite-like carbonaceous material is the most important contribution to get active and stable photocatalysts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRef Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRef
2.
Zurück zum Zitat Cipriani G, Di Dio V, Genduso F, Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494CrossRef Cipriani G, Di Dio V, Genduso F, Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494CrossRef
3.
Zurück zum Zitat Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158CrossRef Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158CrossRef
4.
Zurück zum Zitat Kandiel TA, Dillert R, Robben L, Bahnemann DW (2011) Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today 161:196–201CrossRef Kandiel TA, Dillert R, Robben L, Bahnemann DW (2011) Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today 161:196–201CrossRef
5.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefPubMed Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefPubMed
6.
Zurück zum Zitat Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefPubMed Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefPubMed
7.
Zurück zum Zitat Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef
8.
Zurück zum Zitat Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRef Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRef
9.
Zurück zum Zitat Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMed Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMed
10.
Zurück zum Zitat Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82CrossRef Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82CrossRef
11.
Zurück zum Zitat Lin HS, Chiou CH, Chang CK, Juang RS (2011) Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J Environ Manag 92:3098–3104CrossRef Lin HS, Chiou CH, Chang CK, Juang RS (2011) Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J Environ Manag 92:3098–3104CrossRef
12.
Zurück zum Zitat Kun R, Mogyorósi K, Dékány I (2006) Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl Clay Sci 32:99–110CrossRef Kun R, Mogyorósi K, Dékány I (2006) Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl Clay Sci 32:99–110CrossRef
13.
Zurück zum Zitat Kőrösi L, Papp SZ, Ménesi J, Illés E, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic activity of silver-modified titanium dioxide at solid–liquid and solid–gas interfaces. Colloids Surf A 319:136–142CrossRef Kőrösi L, Papp SZ, Ménesi J, Illés E, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic activity of silver-modified titanium dioxide at solid–liquid and solid–gas interfaces. Colloids Surf A 319:136–142CrossRef
14.
Zurück zum Zitat Naldoni A, D’Arienzo M, Altomare M, Marelli M, Scotti R, Morazzoni F, Selli E, Dal Santo V (2013) Pt and Au/TiO2 photocatalysts for methanol reforming: role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl Catal B 130–131:239–248CrossRef Naldoni A, D’Arienzo M, Altomare M, Marelli M, Scotti R, Morazzoni F, Selli E, Dal Santo V (2013) Pt and Au/TiO2 photocatalysts for methanol reforming: role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl Catal B 130–131:239–248CrossRef
15.
Zurück zum Zitat Tálas E, Pászti Z, Korecz L, Domján A, Németh P, Szíjjártó GP, Mihály J, Tompos A (2018) PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: influence of cocatalysts on the hydrogen production. Catal Today 306:71–80CrossRef Tálas E, Pászti Z, Korecz L, Domján A, Németh P, Szíjjártó GP, Mihály J, Tompos A (2018) PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: influence of cocatalysts on the hydrogen production. Catal Today 306:71–80CrossRef
16.
Zurück zum Zitat Al-Mazroai LS, Bowker M, Davies P, Dickinson A, Greaves J, James D, Millard L (2007) The photocatalytic reforming of methanol. Catal Today 122:46–50CrossRef Al-Mazroai LS, Bowker M, Davies P, Dickinson A, Greaves J, James D, Millard L (2007) The photocatalytic reforming of methanol. Catal Today 122:46–50CrossRef
17.
Zurück zum Zitat Cui W, Feng L, Xu C, Lü S, Qiu F (2004) Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film. Catal Commun 5:533–536CrossRef Cui W, Feng L, Xu C, Lü S, Qiu F (2004) Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film. Catal Commun 5:533–536CrossRef
18.
Zurück zum Zitat Lin WC, Yang WD, Huang IL, Wu TS, Chung ZJ (2009) Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2−xNx catalyst. Energy Fuels 23:2192–2196CrossRef Lin WC, Yang WD, Huang IL, Wu TS, Chung ZJ (2009) Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2−xNx catalyst. Energy Fuels 23:2192–2196CrossRef
19.
Zurück zum Zitat Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRef Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRef
20.
Zurück zum Zitat Yang J, Wang D, Han H, Li C Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909 Yang J, Wang D, Han H, Li C Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909
21.
Zurück zum Zitat Gupta B, Melvin AA, Matthews T, Dash S, Tyagi AK (2016) TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew Sustain Energy Rev 58:1366–1375CrossRef Gupta B, Melvin AA, Matthews T, Dash S, Tyagi AK (2016) TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew Sustain Energy Rev 58:1366–1375CrossRef
22.
Zurück zum Zitat Krissanasaeranee M, Wongkasemjit S, Cheetham AK, Eder D (2010) Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts. Chem Phys Lett 496:133–138CrossRef Krissanasaeranee M, Wongkasemjit S, Cheetham AK, Eder D (2010) Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts. Chem Phys Lett 496:133–138CrossRef
25.
Zurück zum Zitat Faraldos M, Bahamonde A (2017) Environmental applications of titania-graphene photocatalysts. Catal Today 285:13–28CrossRef Faraldos M, Bahamonde A (2017) Environmental applications of titania-graphene photocatalysts. Catal Today 285:13–28CrossRef
26.
Zurück zum Zitat Park Y, Kang SH, Choi W (2011) Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys Chem Chem Phys 13:9425–9431CrossRefPubMed Park Y, Kang SH, Choi W (2011) Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys Chem Chem Phys 13:9425–9431CrossRefPubMed
27.
Zurück zum Zitat Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRef Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRef
28.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
29.
Zurück zum Zitat Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRef Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRef
30.
Zurück zum Zitat You S, Luzan SM, Szabó T, Talyzin AV (2013) Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52:171–180CrossRef You S, Luzan SM, Szabó T, Talyzin AV (2013) Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52:171–180CrossRef
31.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefPubMed Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefPubMed
32.
Zurück zum Zitat Dimiev AM, Alemany LB, Tour JM (2013) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588CrossRefPubMed Dimiev AM, Alemany LB, Tour JM (2013) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588CrossRefPubMed
33.
Zurück zum Zitat Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH dependent surface charge characterisation of successively oxidized graphite oxides. Carbon 44:357–545CrossRef Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH dependent surface charge characterisation of successively oxidized graphite oxides. Carbon 44:357–545CrossRef
34.
Zurück zum Zitat Lerf A, He H, Foster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef Lerf A, He H, Foster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef
35.
Zurück zum Zitat Lerf A, Buchsteiner A, Pieper J, Schöttl S, Dekany I, Szabo T, Boehm HP (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110CrossRef Lerf A, Buchsteiner A, Pieper J, Schöttl S, Dekany I, Szabo T, Boehm HP (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110CrossRef
36.
Zurück zum Zitat Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377CrossRefPubMed Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377CrossRefPubMed
37.
Zurück zum Zitat Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefPubMed Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefPubMed
38.
Zurück zum Zitat Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces 4:3944–3950CrossRefPubMed Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces 4:3944–3950CrossRefPubMed
39.
Zurück zum Zitat Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRef Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRef
40.
Zurück zum Zitat Zhang Q, He YQ, Chen XG, Hu DH, Li LJ, Yin T, Ji LL (2011) Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chin Sci Bull 56:331–339CrossRef Zhang Q, He YQ, Chen XG, Hu DH, Li LJ, Yin T, Ji LL (2011) Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chin Sci Bull 56:331–339CrossRef
41.
Zurück zum Zitat Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRef Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRef
42.
Zurück zum Zitat Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalyst for hydrogen evolution. J Phys Chem C 115:10694–10701CrossRef Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalyst for hydrogen evolution. J Phys Chem C 115:10694–10701CrossRef
43.
Zurück zum Zitat Minella M, Sordello F, Minero C (2017) Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal Today 281:29–37CrossRef Minella M, Sordello F, Minero C (2017) Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal Today 281:29–37CrossRef
44.
Zurück zum Zitat Al-Kandari H, Abdullah AM, Al-Kandari S, Mohamed AM (2015) Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv 5:71988–71998CrossRef Al-Kandari H, Abdullah AM, Al-Kandari S, Mohamed AM (2015) Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv 5:71988–71998CrossRef
45.
Zurück zum Zitat Ding H, Zhang S, Chen JT, Hu XP, Du ZF, Qiu YX, Zhao DL (2015) Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films 584:29–36CrossRef Ding H, Zhang S, Chen JT, Hu XP, Du ZF, Qiu YX, Zhao DL (2015) Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films 584:29–36CrossRef
46.
Zurück zum Zitat Zhang Y, Tang ZR, Fu X, Xu YT (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314CrossRefPubMed Zhang Y, Tang ZR, Fu X, Xu YT (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314CrossRefPubMed
47.
Zurück zum Zitat Zhuang W, He L, Zhu J, An R, Wu X, Mu L, Lu X, Lu L, Liu X, Ying H (2015) TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst support for methanol oxidation. Int J Hydrog Energy 40:3679–3688CrossRef Zhuang W, He L, Zhu J, An R, Wu X, Mu L, Lu X, Lu L, Liu X, Ying H (2015) TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst support for methanol oxidation. Int J Hydrog Energy 40:3679–3688CrossRef
49.
Zurück zum Zitat Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90CrossRef Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90CrossRef
50.
Zurück zum Zitat Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N (2015) Ag-loaded TiO2/reduced graphene oxide nanocomposites forenhanced visible-light photocatalytic activity. Appl Surf Sci 353:865–872CrossRef Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N (2015) Ag-loaded TiO2/reduced graphene oxide nanocomposites forenhanced visible-light photocatalytic activity. Appl Surf Sci 353:865–872CrossRef
51.
Zurück zum Zitat Kamat PV (2010) Graphene-based nanoarchitectures anchoring semiconductorand metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRef Kamat PV (2010) Graphene-based nanoarchitectures anchoring semiconductorand metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRef
52.
Zurück zum Zitat Szabó T, Veres Á, Cho E, Khim J, Varga N, Dékány I (2013) Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids Surf A 433:230–239CrossRef Szabó T, Veres Á, Cho E, Khim J, Varga N, Dékány I (2013) Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids Surf A 433:230–239CrossRef
53.
Zurück zum Zitat Preočanin T, Kallay N (2006) Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat Chem Acta 79:95–106 Preočanin T, Kallay N (2006) Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat Chem Acta 79:95–106
54.
Zurück zum Zitat Vass Á, Pászti Z, Bálint SZ, Németh P, Szíjjártó GP, Tompos A, Tálas E (2016) Structural evolution in Pt/Ga-Zn-oxynitride catalysts for photocatalytic reforming of methanol. Mater Res Bull 83:65–76CrossRef Vass Á, Pászti Z, Bálint SZ, Németh P, Szíjjártó GP, Tompos A, Tálas E (2016) Structural evolution in Pt/Ga-Zn-oxynitride catalysts for photocatalytic reforming of methanol. Mater Res Bull 83:65–76CrossRef
55.
Zurück zum Zitat Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053CrossRef Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053CrossRef
56.
Zurück zum Zitat Fung BM, Khitrin AK, Ermolaev KJ (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefPubMed Fung BM, Khitrin AK, Ermolaev KJ (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefPubMed
57.
Zurück zum Zitat Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie
58.
Zurück zum Zitat Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, version 3.4. National Institute of Standards and Technology, Gaithersburg, http://srdata.nist.gov/xps/ Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, version 3.4. National Institute of Standards and Technology, Gaithersburg, http://​srdata.​nist.​gov/​xps/​
60.
Zurück zum Zitat Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36:828–832CrossRef Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36:828–832CrossRef
61.
Zurück zum Zitat El-Bery HM, Matsushita Y, Abdel-moneim A (2017) Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: comparison between RGO, Au and Pt reduction sites. Appl Surf Sci 423:185–196CrossRef El-Bery HM, Matsushita Y, Abdel-moneim A (2017) Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: comparison between RGO, Au and Pt reduction sites. Appl Surf Sci 423:185–196CrossRef
62.
Zurück zum Zitat Jiang Y, Scott J, Amal R (2012) Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts. Appl Catal B 126:290–297CrossRef Jiang Y, Scott J, Amal R (2012) Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts. Appl Catal B 126:290–297CrossRef
63.
Zurück zum Zitat Stobinski L, Lesiak B, Zemek J, Piricek K (2012) Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods. Appl Surf Sci 258:7912–7917CrossRef Stobinski L, Lesiak B, Zemek J, Piricek K (2012) Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods. Appl Surf Sci 258:7912–7917CrossRef
64.
Zurück zum Zitat Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRef Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRef
65.
Zurück zum Zitat Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152CrossRef Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152CrossRef
66.
Zurück zum Zitat Yang WD, Li YR, Lee YC (2016) Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Appl Surf Sci 380:249–256CrossRef Yang WD, Li YR, Lee YC (2016) Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Appl Surf Sci 380:249–256CrossRef
67.
Zurück zum Zitat Cao S, Liu T, Tsang Y, Chen C (2016) Role of hydroxylation modification on the structure and property ofreduced graphene oxide/TiO2 hybrids. Appl Surf Sci 382:225–238CrossRef Cao S, Liu T, Tsang Y, Chen C (2016) Role of hydroxylation modification on the structure and property ofreduced graphene oxide/TiO2 hybrids. Appl Surf Sci 382:225–238CrossRef
68.
Zurück zum Zitat Emeline AV, Ryabchuk VK, Serpone N (2007) Photoreactions occurring on metal-oxide surfaces are not all photocatalytic. Description of criteria and conditions for processes to be photocatalytic. Catal Today 122:91–100CrossRef Emeline AV, Ryabchuk VK, Serpone N (2007) Photoreactions occurring on metal-oxide surfaces are not all photocatalytic. Description of criteria and conditions for processes to be photocatalytic. Catal Today 122:91–100CrossRef
69.
Zurück zum Zitat Tan HL, Denny F, Hermawan M, Wong RJ, Amal R, Ng YH (2017) Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2. J Materiomics 3:51–57CrossRef Tan HL, Denny F, Hermawan M, Wong RJ, Amal R, Ng YH (2017) Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2. J Materiomics 3:51–57CrossRef
Metadaten
Titel
Graphite Oxide-TiO2 Nanocomposite Type Photocatalyst for Methanol Photocatalytic Reforming Reaction
verfasst von
Katalin Majrik
Árpád Turcsányi
Zoltán Pászti
Tamás Szabó
Attila Domján
Judith Mihály
András Tompos
Imre Dékány
Emília Tálas
Publikationsdatum
11.05.2018
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 12-13/2018
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-018-0989-z

Weitere Artikel der Ausgabe 12-13/2018

Topics in Catalysis 12-13/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.