Skip to main content
Log in

Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Transgenic brassica crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are being investigated as candidates for field release to control lepidopteran pests. Information on the potential impact of Bt brassica crops on pests and non-target natural enemies is needed as part of an environmental risk assessment prior to the commercial release. This first tier study provides insight into the tritrophic interactions among Bt broccoli plants, the herbivore Pieris rapae and its parasitoid Pteromalus puparum. We first evaluated the efficacy of three types of Bt broccoli plants, cry1Ac, cry1C and cry1Ac + cry1C, on different instars of P. rapae. Bt broccoli effectively controlled P. rapae larvae, although later instars were more tolerant. The efficacy of different Bt broccoli plants on P. rapae larvae was consistently cry1Ac cry1Ac  + cry1Ccry1C. When the parasitoid P. puparum developed in a P. rapae pupa (host) that had developed from Bt plant-fed older larvae, developmental time, total number and longevity of the P. puparum generated from the Bt plant-fed host were significantly affected compared with those generated from the non-Bt control plant-fed host. Simultaneously, negative effects on P. rapae pupae were found, i.e. pupal length, width and weight were significantly reduced after older P. rapae larvae fed on different Bt plants for 1 or 2 days. Cry1C toxin was detected using ELISA in P. rapae pupae after older larvae fed on cry1C broccoli. However, no Cry1C toxin was detected in newly emerged P. puparum adults developing in Bt-fed hosts. Only a trace amount of toxin was detected from entire P. puparum pupae dissected from the Bt plant-fed host. Moreover, no negative effect was found on the progeny of P. puparum developing from the Bt plant-fed host when subsequently supplied with a healthy host, P. rapae pupae. The reduced quality of the host appears to be the only reason for the observed deleterious effects on P. puparum. Our data suggest that the effects on P. puparum developing in Bt plant-fed P. rapae are mediated by host quality rather than by direct toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1Ac on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26:325–332

    Article  CAS  Google Scholar 

  • Bernal JS, Griset JG, Gillogly PO (2002) Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoid. J Entomol Sci 37:27–40

    Google Scholar 

  • Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant cabbage plants expressing a synthetic cry1Ab gene from Bacillus thuringiensis. Curr Sci 83:146–150

    CAS  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech cops: Socio-economic and environmental effects in the first ten years of commercial use. AgBioForum 9:139–151

    Google Scholar 

  • Cao J, Shelton AM, Earle ED (2005) Development of transgenic collards (Brassica oleracea L., var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Prot 24:804–813

    Article  CAS  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141

    Article  CAS  Google Scholar 

  • Cao J, Zhao JZ, Tang JD, Shelton AM, Earle ED (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moth resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ye GY, Lu XM, Hu C, Peng YF, Shu QY, Altosaar I (2005) Biotransfer and bioaccumulation of Cry1Ab insecticidal protein in rice plant-brown planthopper-wolf spider food chain. Acta Entomol Sinica 48:208–213

    CAS  Google Scholar 

  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH, Conner EL, Reader JK, White DWR, Voicey CR (2006) Cabbage white butterfly and diamond-back moth resistant Brassica oleracea plants transgenic for Cry1Bal or cry1C. Acta Hortic 706:247–253

    CAS  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Article  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2003) Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. BioControl 48:611–636

    Article  CAS  Google Scholar 

  • Ferry N, Edwards MG, Mulligan EA, Emami K, Petrova A, Frantescu M, Davison GM, Gatehouse AMR (2003) Engineering resistance to insect pests. In: Christou P, Klee H (eds) Handbook of plant biotechnology. John Wiley & Sons, New York

  • Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  PubMed  CAS  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998a) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnae (Neurophera: Chrysopidae). Environ Entomol 27:480–487

    Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai Carey M, Filippini A, Bigler F (1998b) Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnae (Neurophera: Chrysopidae). Environ Entomol 27:1255–1263

    CAS  Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai Carey M, Filippini A, Bigler F (1999) Prey-mediated effects of Cry1Ab toxin and protoxin and Cry1A protoxin on the predator Chrysoperla carnae. Entomol Exp Appl 91:305–316

    Article  CAS  Google Scholar 

  • James C (2006) Global status of commercialized biotech/GM crops ISAAA Briefs, No. 35. ISAAA, Ithaca

  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens mediated transformation. In Vitro Cell Dev Biol 36:231–237

    Article  CAS  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Mahr S (1996) Pteromalus puparum, parasite of imported cabbageworm. In: Midwest biological control new online. http://www.entomology.wisc.edu/mbcn/kyf312.html. Cited 7 Mar 2007

  • Meissle M, Vojtech E, Poppy GM (2004) Implications for the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae) when developing in Bt maize-fed Spodoptera littoralis larvae (Lepidoptera: Noctuidae). IOBC/WPRS Bull 27:117–123

    Google Scholar 

  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: Implications for pest management strategies. Mol Breed 1:309–317

    Article  CAS  Google Scholar 

  • Naranjo SE, Head G, Dively GP (2005) Field studies assessing arthropod non-target effects in Bt transgenic crops: Introduction. Environ Entomol 34:1178–1180

    Article  Google Scholar 

  • Norusis M (2005) SPSS 13.0 advanced statistical procedure companion. Prentice Hall, Upper Saddle River

  • Poppy G, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:259–268

    Article  Google Scholar 

  • Prütz G, Dettner K (2004) Effect of Bt corn leaf suspension on food consumption by Chilo partellus and life history parameters of its parasitoid Cotesia flavipes under laboratory conditions. Entomol Exp Appl 111:179–186

    Article  Google Scholar 

  • Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Rose RI (2006) Tier-based testing for effects of proteinaceous insecticidal plant-incorporated protectants on non-target arthropods in the context of regulatory risk assessment. IOBC/WPRS Bull 29:143–149

    Google Scholar 

  • Salama HS, Zaki FN (1983) Interaction between Bacillus thuringiensis Berliner and the parasites and predators of Spodoptera littoralis in Egypt. Z Angew Entomol 95:425–429

    Google Scholar 

  • Salama HS, Sharaby A, Ragaei M (1983) Chemical changes in the haemolymph of Spidoptera littoralis (Lepidoptera: Noctuidae) as affected by Bacillus thuringiensis. Entomophaga 28:331–337

    Article  CAS  Google Scholar 

  • Schuler TH, Denholm I, Clark SJ, Stewart CN, Poppy GM (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Physiol 50:435–443

    Article  PubMed  CAS  Google Scholar 

  • Shelton AM, Wilsey WT, Hoebeke ER, Schmaedick MA (2002a) Parasitoids of cabbage Lepidoptera in central New York. J Entomol Sci 37:270–271

    Google Scholar 

  • Shelton AM, Wyman JA, Cushing NL, Apfelbeck K, Dennehy TJ, Mahr SER, Eigenbrode SD. (1993) Insecticide resistance of diamondback moth (Lepidoptra: Plutellidae) in North America. J Econ Entomol 86:11–19

    CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002b) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan R, Talekar NS, Dhawan V (2005) Transgenic plants with dual Bt gene: An innovative initiative for sustainable management of Brassica insect pests. Curr Sci 88:1877–1879

    Google Scholar 

  • Tang JD, Collins HL, Metz TD, Earle ED, Zhao JZ, Roush RT, Shelton AM (2001) Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol 94:240–247

    PubMed  CAS  Google Scholar 

  • US EPA (2001) Bt plant pesticides risk and benefit assessments. 2000 FIFRA SAP Rep. No. 200–07. http://www. epa. gov/scipoly/sap/2000/october/octoberfinal

  • Vásquez LA, Shelton AM, Hoffmann MP, Roush RT (1997) Laboratory evaluation of commercial trichogrammatid products for potential use against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Biol Control 9:143–148

    Article  Google Scholar 

  • Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res 14:133–144

    Article  PubMed  CAS  Google Scholar 

  • Walker GP, Cameron PJ, MacDonald FM, Madhusudhan VV, Wallace AR (2007) Impacts of Bacillus thuringiensis toxins on parasitoids (Hymenoptera: Braconidae) of Spodoptera littoralis and Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Control 40:142–151

    Article  CAS  Google Scholar 

  • Webb SE, Shelton AM (1988) Laboratory rearing of the imported cabbageworm. New York Food Life Sci Bull 122:1–6

    Google Scholar 

  • Wold-Burkness SJ, Hutchison WD, Lee JC, Hines RL, Bolin PC, Heimpel GE (2005) A long-term survey of parasitoid species composition and parasitism of Trichoplusia ni (Lepidoptera: Noctuidae), Plutella xylostella (Lepidoptera: Plutellidae), and Pieris rapae (Lepidoptera: Pieridae) in Minnesota cabbage. J Entomol Sci 40:211–221

    Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li YX, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Shelton AM (2002) Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth. J Econ Entomol 95:14–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yen Mei Cheung for assistance throughout this study and Hilda L. Collins for helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Shelton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Zhao, Jz., Shelton, A.M. et al. Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Transgenic Res 17, 545–555 (2008). https://doi.org/10.1007/s11248-007-9127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9127-6

Keywords

Navigation