Skip to main content
Erschienen in: Tribology Letters 3/2015

01.09.2015 | Original Paper

Transfer Film Tenacity: A Case Study Using Ultra-Low-Wear Alumina–PTFE

verfasst von: J. Ye, A. C. Moore, D. L. Burris

Erschienen in: Tribology Letters | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transfer film, a protective barrier that forms when a solid lubricant slides against a hard and high-surface-energy counterface, plays an important role in friction and wear reduction. The transfer films of many solid lubricants are removed and replenished during sliding. However, one particularly low wear rate solid lubricant has been shown to produce persistent transfer films that thicken and homogenize over the course of a test. Based on a mass balance of the system, transfer film growth can only occur if its wear rate is less than that of the parent polymer. However, recent measurements of the wear rates of these transfer films show that they are likely orders of magnitude higher than those of the parent polymer. The goal of this paper is to elucidate the origins of this apparent contradiction. In this study, a high-density polyethylene (HDPE) probe was used in an effort to approximate the contact conditions under which the film originally formed. Transfer films formed during run-in of the parent solid lubricant were removed immediately by the HDPE pin (k ~ 100 mm3/Nm). However, transfer films formed after the solid lubricant had transitioned to ultra-low wear rates themselves exhibited ultra-low wear rates in the range from 10−8 to 10−10 mm3/Nm; to our knowledge, this is the first direct observation of ultra-low wear rate transfer films, a condition that was previously assumed necessary for ultra-low wear rates of the solid lubricant system. Follow-up measurements showed that the wear rate of the transfer film was extremely sensitive to the surface energy of the probe; the wear rate increased by orders of magnitude when the surface energy of the probe exceeded a critical value near ~35 mJ/mm2. These results provide fresh insights into the wear behaviors of transfer films and the processes governing ultra-low wear of solid lubricant materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Based on the wear scar in Fig. 4d, the worn radius is ~400 µm. The volume of this spherical cap would be 0.006 mm3, but most of the contact appears to have been brightened by asperity flattening rather than gross removal. There is evidence of a discrete wear event that reflects the liberated debris we saw on the transfer film before stopping the test; these results suggest that wear occurred primarily in this single event. Based on particle size, we estimate that the HDPE had a net wear rate k = 3 × 10−7 mm3/Nm.
 
Literatur
1.
Zurück zum Zitat Briscoe, B.: Wear of polymers—an essay on fundamental-aspects. Tribol. Int. 14, 231–243 (1981)CrossRef Briscoe, B.: Wear of polymers—an essay on fundamental-aspects. Tribol. Int. 14, 231–243 (1981)CrossRef
2.
Zurück zum Zitat Lancaster, J.K.: Polymer-based bearing materials—role of fillers and fiber reinforcement. Tribol. Int. 5, 249–255 (1972)CrossRef Lancaster, J.K.: Polymer-based bearing materials—role of fillers and fiber reinforcement. Tribol. Int. 5, 249–255 (1972)CrossRef
3.
Zurück zum Zitat Bahadur, S., Gong, D.: The action of fillers in the modification of the tribological behavior of polymers. Wear 158, 41–59 (1992)CrossRef Bahadur, S., Gong, D.: The action of fillers in the modification of the tribological behavior of polymers. Wear 158, 41–59 (1992)CrossRef
4.
Zurück zum Zitat Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)CrossRef Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)CrossRef
5.
Zurück zum Zitat Blanchet, T., Kennedy, F.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)CrossRef Blanchet, T., Kennedy, F.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)CrossRef
6.
Zurück zum Zitat Burris, D., Sawyer, W.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. T. 48, 147–153 (2005)CrossRef Burris, D., Sawyer, W.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. T. 48, 147–153 (2005)CrossRef
7.
Zurück zum Zitat Burris, D.L., et al.: Polymeric nanocomposites for tribological applications. Macrol. Mater. Eng. 292, 387–402 (2007)CrossRef Burris, D.L., et al.: Polymeric nanocomposites for tribological applications. Macrol. Mater. Eng. 292, 387–402 (2007)CrossRef
8.
Zurück zum Zitat Schwartz, C., Bahadur, S.: Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237, 261–273 (2000)CrossRef Schwartz, C., Bahadur, S.: Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237, 261–273 (2000)CrossRef
9.
Zurück zum Zitat Wang, Y.X., Yan, F.Y.: Tribological properties of transfer films of PTFE-based composites. Wear 261, 1359–1366 (2006)CrossRef Wang, Y.X., Yan, F.Y.: Tribological properties of transfer films of PTFE-based composites. Wear 261, 1359–1366 (2006)CrossRef
10.
Zurück zum Zitat Li, H., et al.: A study of the tribological behavior of transfer films of PTFE composites formed under different loads, speeds and morphologies of the counterface. Wear 328–329, 17–27 (2015)CrossRef Li, H., et al.: A study of the tribological behavior of transfer films of PTFE composites formed under different loads, speeds and morphologies of the counterface. Wear 328–329, 17–27 (2015)CrossRef
11.
Zurück zum Zitat Uruena, J.M., et al.: Evolution and wear of fluoropolymer transfer films. Tribol. Lett. 57, 1–8 (2015)CrossRef Uruena, J.M., et al.: Evolution and wear of fluoropolymer transfer films. Tribol. Lett. 57, 1–8 (2015)CrossRef
12.
Zurück zum Zitat Ye, J., Khare, H.S., Burris, D.L.: Transfer Film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013)CrossRef Ye, J., Khare, H.S., Burris, D.L.: Transfer Film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013)CrossRef
13.
Zurück zum Zitat Pitenis, A.A., et al.: Ultra-low wear PTFE and alumina composites: all about tribochemistry. Tribol. Lett. 57, 626–631 (2015)CrossRef Pitenis, A.A., et al.: Ultra-low wear PTFE and alumina composites: all about tribochemistry. Tribol. Lett. 57, 626–631 (2015)CrossRef
14.
Zurück zum Zitat Harris, K.L., et al.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48, 3739–3745 (2015)CrossRef Harris, K.L., et al.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48, 3739–3745 (2015)CrossRef
15.
Zurück zum Zitat Ye, J., Khare, H.S., Burris, D.L.: Quantitative characterization of solid lubricant transfer film quality. Wear 316, 133–143 (2014)CrossRef Ye, J., Khare, H.S., Burris, D.L.: Quantitative characterization of solid lubricant transfer film quality. Wear 316, 133–143 (2014)CrossRef
16.
Zurück zum Zitat Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40, 11–21 (2010)CrossRef Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40, 11–21 (2010)CrossRef
17.
Zurück zum Zitat Kandanur, S.: The role of filler size & content and countersurface roughness in the wear resistance of alumina-PTFE nano-composites. Ph.D, Rensselaer Polytechnic Institute (2010) Kandanur, S.: The role of filler size & content and countersurface roughness in the wear resistance of alumina-PTFE nano-composites. Ph.D, Rensselaer Polytechnic Institute (2010)
18.
Zurück zum Zitat Krick, B.A., et al.: Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51, 42–46 (2012)CrossRef Krick, B.A., et al.: Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51, 42–46 (2012)CrossRef
19.
Zurück zum Zitat Krick, B.A., Ewin, J.J., McCumiskey, E.J.: Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites. Tribol T. 57, 1058–1065 (2014)CrossRef Krick, B.A., Ewin, J.J., McCumiskey, E.J.: Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites. Tribol T. 57, 1058–1065 (2014)CrossRef
20.
Zurück zum Zitat McElwain, S., et al.: Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. T. 51, 247–253 (2008)CrossRef McElwain, S., et al.: Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. T. 51, 247–253 (2008)CrossRef
21.
Zurück zum Zitat Pitenis, A.A., et al.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. 53, 189–197 (2014)CrossRef Pitenis, A.A., et al.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. 53, 189–197 (2014)CrossRef
22.
Zurück zum Zitat Burris, D., Sawyer, W.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)CrossRef Burris, D., Sawyer, W.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)CrossRef
23.
Zurück zum Zitat Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009)CrossRef Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009)CrossRef
24.
Zurück zum Zitat Schmitz, T., et al.: Wear-rate uncertainty analysis. J. Tribol.-T. ASME. 126, 802–808 (2004)CrossRef Schmitz, T., et al.: Wear-rate uncertainty analysis. J. Tribol.-T. ASME. 126, 802–808 (2004)CrossRef
25.
Zurück zum Zitat I.S.O. (ISO): Guide to the Expression of Uncertainty in Measurement (Corrected and Reprinted 1995). (1993) I.S.O. (ISO): Guide to the Expression of Uncertainty in Measurement (Corrected and Reprinted 1995). (1993)
26.
Zurück zum Zitat Agrawal, D.C., Raj, R.: Measurement of the ultimate shear-strength of a metal ceramic interface. Acta Metall. Mater. 37, 1265–1270 (1989)CrossRef Agrawal, D.C., Raj, R.: Measurement of the ultimate shear-strength of a metal ceramic interface. Acta Metall. Mater. 37, 1265–1270 (1989)CrossRef
27.
Zurück zum Zitat Agrawal, D.C., Raj, R.: Ultimate shear strengths of copper silica and nickel silica interfaces. Mat. Sci. Eng. A.-Struct. 126, 125–131 (1990)CrossRef Agrawal, D.C., Raj, R.: Ultimate shear strengths of copper silica and nickel silica interfaces. Mat. Sci. Eng. A.-Struct. 126, 125–131 (1990)CrossRef
28.
Zurück zum Zitat Liu, K., Piggott, M.R.: Shear-strength of polymers and fiber composites. 1. Thermoplastic and thermoset polymers. Composites. 26, 829–840 (1995)CrossRef Liu, K., Piggott, M.R.: Shear-strength of polymers and fiber composites. 1. Thermoplastic and thermoset polymers. Composites. 26, 829–840 (1995)CrossRef
29.
Zurück zum Zitat Brandrup, J., Immergut, E.H. and G. E.A., Polymer Handbook. Wiley, New York (1999) Brandrup, J., Immergut, E.H. and G. E.A., Polymer Handbook. Wiley, New York (1999)
30.
Zurück zum Zitat Cognard, P., Handbook of Adhesives and Sealants: Basic Concepts and High Tech Bonding, p 511. Elsevier, Amsterdam (2005) Cognard, P., Handbook of Adhesives and Sealants: Basic Concepts and High Tech Bonding, p 511. Elsevier, Amsterdam (2005)
31.
Zurück zum Zitat Mark, J.E.: Polymer Data Handbook. 1018 (1999) Mark, J.E.: Polymer Data Handbook. 1018 (1999)
32.
Zurück zum Zitat Mark, J.E., Physical Properties of Polymers Handbook. Springer Science and Business Media, New York (2007) Mark, J.E., Physical Properties of Polymers Handbook. Springer Science and Business Media, New York (2007)
33.
Zurück zum Zitat Rabinowicz, E., Friction and Wear of Materials, p 307. Wiley, New York (1995) Rabinowicz, E., Friction and Wear of Materials, p 307. Wiley, New York (1995)
34.
Zurück zum Zitat Khare, H.S., et al.: The interrelated effects of temperature and environment on wear and tribochemistry of an ultra-low wear PTFE composite. J. Phys. Chem. C (2015). doi:10.1021/acs.jpcc.5b00947 Khare, H.S., et al.: The interrelated effects of temperature and environment on wear and tribochemistry of an ultra-low wear PTFE composite. J. Phys. Chem. C (2015). doi:10.​1021/​acs.​jpcc.​5b00947
35.
Zurück zum Zitat Onodera, T., et al.: Effect of tribochemical reaction on transfer-film formation by poly(tetrafluoroethylene). J. Phys. Chem. C 118, 11820–11826 (2014)CrossRef Onodera, T., et al.: Effect of tribochemical reaction on transfer-film formation by poly(tetrafluoroethylene). J. Phys. Chem. C 118, 11820–11826 (2014)CrossRef
36.
Zurück zum Zitat Tian, J., Xue, Q.J.: Surface modification of PTFE by Co-60 gamma-ray irradiation. J. Appl. Polym. Sci. 69, 435–441 (1998)CrossRef Tian, J., Xue, Q.J.: Surface modification of PTFE by Co-60 gamma-ray irradiation. J. Appl. Polym. Sci. 69, 435–441 (1998)CrossRef
37.
Zurück zum Zitat Gong, D., Xue, Q.J., Wang, H.L.: Physical models of adhesive wear of polytetrafluoroethylene and its composites. Wear 147, 9–24 (1991)CrossRef Gong, D., Xue, Q.J., Wang, H.L.: Physical models of adhesive wear of polytetrafluoroethylene and its composites. Wear 147, 9–24 (1991)CrossRef
38.
Zurück zum Zitat Hu, J.J., et al.: Transmission electron microscopy analysis of Mo-W-S-Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 32, 49–57 (2008)CrossRef Hu, J.J., et al.: Transmission electron microscopy analysis of Mo-W-S-Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 32, 49–57 (2008)CrossRef
39.
Zurück zum Zitat Khare, H.S., Burris, D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014)CrossRef Khare, H.S., Burris, D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014)CrossRef
40.
Zurück zum Zitat Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)CrossRef Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)CrossRef
Metadaten
Titel
Transfer Film Tenacity: A Case Study Using Ultra-Low-Wear Alumina–PTFE
verfasst von
J. Ye
A. C. Moore
D. L. Burris
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2015
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-015-0576-4

Weitere Artikel der Ausgabe 3/2015

Tribology Letters 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.