Skip to main content
Log in

Fire Risk and Vegetation Structural Dynamics in Mediterranean Shrubland

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Phytomass structural characteristics are highly related to vegetation flammability. In fire-prone species like Mediterranean gorse, which accumulate standing dead fuel, susceptibility to fire is a function of fuel load, vegetation composition and fuel cover, and these characteristics change with time. Thus, for effective fuel control management, knowledge of the vegetation structural dynamics related to fire risk is crucial for preventing future fires. This study analyses structural dynamics in the above-ground phytomass of Ulex parviflorus shrublands in relation to different stages of flammability, i.e., the amount of time elapsed since the last fire. For this, 152 plants were cut from shrublands at different stages of development (young, mature and senescent), and various dimensional measurements were taken on each. The phytomass was separated into living or dead fuel fractions as well as into twigs or branches depending on the stem diameter. Basal diameter is the variable that best predicted Ulex parviflorus total phytomass as well as that of the different fractions. Both dimensional and phytomass variables increased with plant development. In the young shrublands Ulex parviflorus constitutes 54% of total phytomass, and Ulex parviflorus's dead twigs fraction accounts for 5% of total phytomass. In the mature and senescent shrublands, this species represents 80% of total shrubland phytomass, and dead twigs reach values greater than 40%. Our results show that structural changes in the fuel over short periods of time (young and mature) reveal critical periods in shrub development. Identification of these stages is a necessary tool for planning fuel control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albini F.A. (1996). Iterative solution of the radiation transport equations governing spread of fire. Wildland Fire 32(5): 71–82

    CAS  Google Scholar 

  • Armand D., Etienne M., Legrand C., Marechal J. and Valette J.C. (1993). Phytovolumen, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann. Forest Sci. 50: 79–89

    Google Scholar 

  • Baeza M.J. 2001. Aspectos ecológicos y técnicas de control del combustible (roza y quema controlada) en matorrales con alto riesgo de incendio dominados por Ulex parviflorus (Pourr.). Ph. Thesis. Universidad de Alicante. http://www.cervantesvirtual.com/FichaObra.html?Ref=5920.

  • Baeza M.J., Raventós J. and Escarré A. (2002). Factors influencing fire behaviour in shrubland of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manage. 65: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Begon M., Mortimer M. and Thompson D.J. 1996. Population Ecology. Blackwell Science Ltd.

  • Bessie W.C. and Johnson E.A. (1995). The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76(3): 747–762

    Article  Google Scholar 

  • Bilgili E. (2003). Stand development and fire behavior. Forest Ecol. Manage. 179: 333–339

    Article  Google Scholar 

  • Bond W.J. (1996). Fire and Plants. Chapman & Hall, London

    Google Scholar 

  • Brown J.K. (1976). Estimating shrub biomass from basal stem diameters. Can. J. Forest Res. 6: 153–158

    Article  Google Scholar 

  • Brown J.K., Oberheu R.D. and Johnston C.M. 1982. Handbook for Inventorying Surface Fuels and Biomass in the Interior West. USDA. Int. For. and Ran. Exp. Sta. Gen. Tec. Rep. INT-129.

  • Burgan R.E. and Rothermel R.C. 1984. BEHAVE: fire behavior prediction and fuel modeling system-Fuel subsystem. USDA. For.Serv.Gen.Tech.Rep. INT-167, Intermt. For. and Range Exp. Stn., Ogden, Utah.

  • Burrows N.D. and McCaw W.L. (1990). Fuel characteristics and bushfire control in Banksia low woodlands in western Australia. J. Environ. Manage. 31: 229–236

    Article  Google Scholar 

  • Caswell H. (2001). Matrix Populations Models, Construction, Analisis and Interpretation. Sinauer, Massachusetts, USA

    Google Scholar 

  • Causton D.R. and Venus J.C. (1981). The Biometry of Plant Growth. Edward Arnold Publishers Ltd, London

    Google Scholar 

  • Chandler C., Cheney P., Thomas P., Trabaud L. and Williams D. (1983). Fire in forestry. In: (eds) Forest fire behavior and effects, pp. John Wiley & Sons, New York

    Google Scholar 

  • Countryman C.M. and Philpot C.W. 1970. Physical characteristics of chamise as a wildland fuel. USDA. For. Serv. Res. Pap. PSW-66.

  • Crawley M.J. 1997. Life History and Environment. In: Crawley M.J. (ed), Plant Ecology. Blackwell Science Ltd. Rothermel R.C. and Philpot C.W. 1973. Predicting changes in.

  • Díaz Barradas M.C., Mateos M.A., Orellana R., Zunzunegui M. and García Novo F. (1999). Changes in the canopy structure of the Mediterranean shrub Lavandula stoechas after disturbance. J. Veget. Sci. 10: 449–456

    Article  Google Scholar 

  • Dimitrakopoulos A.P. (2001). A statistical classification of Mediterranean species based on their flammability components. Int. J. Wildland Fire 10: 113–118

    Article  Google Scholar 

  • Doat J. and Valette J. CH. (1981). Le pouvoir calorifique supérior d’espèces forestières méditerranèennes. Ann. Forest Sci. 38(4): 469–486

    Google Scholar 

  • Eftichidis G., Varela V. and Margaritis E. 1998. Prometheus system: A modern approach for wildfire management in the Mediterranean ecosystems. In: Viegas D.X. (ed), Proceedings of the International Conference of Forest Fire Research. Vol. II, Luso-Coimbra, pp. 2349–2350.

  • Elvira L.M. and Hernando C. 1989. Inflamabilidad y energía de las especies de sotobosque. Colección Monografías INIAno 68.

  • Gray J.T. and Schlesinger H. (1981). Biomass, production and litterfall in the coastal sage scrub of Southern California. Am. J. Bot. 68(1): 24–33

    Article  Google Scholar 

  • Gray J.T. (1982). Community structure and productivity in Ceanothus chaparral and coastal sage scrub of Souther California. Ecol. Monographs 52(4): 415–435

    Article  Google Scholar 

  • Johnson E.A. (1992). Fire and vegetation dynamics: Studies from the North American boreal forest. Cambridge University Press, New York

    Google Scholar 

  • Johnson E.A. and Gutsell S.L. (1994). Fire frequency models, methods and interpretations. Adv. Ecol. Res. 25: 229–287

    Google Scholar 

  • Legrand C. 1990. Strategies of three obligate-seeder shrubs, Cistus albidus L., Ulex parvifiorus Pourr., Rosmarinus officinalis L. after wild fire. In: Viegas D.X. (ed), Proceedings of the International Conference of Forest Fire Research Coimbra.

  • Malanson G.P. and Trabaud L. (1988). Computer simulations of fire behaviour in garrige in South France. Appl. Geography 8: 53–64

    Article  Google Scholar 

  • McCarthy M.A., Malcolm G. and Bradstock R.A. (2001). Theoretical fire-interval distributions. Int. J. Wildland Fire 10: 73–77

    Article  CAS  Google Scholar 

  • Papió C. and Trabaud L. (1990). Structural characteristics of fuel components of five Mediterranean shrubs. Forest Ecol. Manage. 35: 249–259

    Article  Google Scholar 

  • Papió C. and Trabaud L. (1991). Comparative study of the aerial structure of five shrubs of Mediterranean shrublands. Forest Sci. 37(1): 146–159

    Google Scholar 

  • Paysen T.E. and Cohen J.D. (1990). Chamise chaparral dead fuel fraction is not reliably predicted by age. Western J. Appl. Forestry 5: 127–131

    Google Scholar 

  • Pereira J.M., Sequeira N.M. and Carreiras J.M. (1995). Structural properties and dimensional relations of some Mediterranean shrub fuels. Int. J. Wildland Fire 5(1): 35–42

    Article  Google Scholar 

  • Riggan P.J., Goode S., Jacks P.M. and Lockwood R.N. (1988). Interaction of fire and community development in chaparral of southern California. Ecol. Monographs 58(3): 155–176

    Article  Google Scholar 

  • Rothermel R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Serv. Res. Pap. INT-115, 40 pp. Utah.

  • Rothermel R.C. and Philpot C.W. (1973). Predicting changes in chaparral flammability. J. Forestry 71: 640–643

    Google Scholar 

  • Rothermel R.C., Wilson R.A., Morris G.A. and Sackett S.S. 1986. Modelling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system. USDA. For. Ser. Int. For. and Ran. Exp. Sta. Res Paper INT-359. 61 pp.

  • Roy J. and Sonie L. (1992). Germination and populations dynamics of Cistus species in relation to fire. J. Appl. Ecol. 29: 647–655

    Article  Google Scholar 

  • Schlesinger W.H. and Gill D.S. (1978). Demographic studies of the chaparral shrubCeanothus megacarpus in the Santa Ynez Mountains, California. Ecology 59(6): 1256–1263

    Article  Google Scholar 

  • Schlesinger W.H. and Gill D.S. (1980). Biomass, production and changes in the availability of lightwaterand nutrients during the development of pure stands of the chaparral shrubCeanothus megacarpus after fire. Ecology 61(4): 781–789

    Article  Google Scholar 

  • Specht R.L. (1969). A comparison of the clerophyllous vegetation characteristic of Mediterranean type climates in FranceCalifornia and southern Australia: II. Dry matterenergy and nutrient accumulation. Aust. J. Bot. 17: 293–308

    Article  CAS  Google Scholar 

  • Sprugel D.G. (1983). Correcting for bias in log-transformed allometric equations. Ecology 64(1): 209–210

    Article  Google Scholar 

  • Tilman D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, New Jersey, USA

    Google Scholar 

  • Trabaud L. (1980). Impact biologique des feux de végétation sur l’organisation, la structure et l’évolution de la végétation des garrigues du Bas Languedoc. Thèse etat Univ. Sc. Tech, Languedoc, Montpellier, 288

    Google Scholar 

  • Trabaud L. (1994). The effect of fire on nutrient losses and cycling in a Quercus coccifera garrigue (southern France). Oecologia 99: 379–386

    Article  Google Scholar 

  • Trabaud L. and Lepart J. (1980). Diversity and stability in garrigue ecosystems after fire. Vegetatio 43: 49–57

    Article  Google Scholar 

  • Underwood A.J. (1997). Experiments in Ecology. Their Logical Design and Interpretation using Analysis of Variance. Cambridge University Press, UK

    Google Scholar 

  • Usó J.L., Mateu J., Karjalainen T. and Salvador P. (1997). Allometric regression equations to determine aerial biomasses of Mediterranean shrubs. Plant Ecol. 132: 59–69

    Article  Google Scholar 

  • Vallejo V.R. and Alloza J.A. (1998). The restauration of burned lands: The case of eastern Spain. In: Moreno, J.M. (eds) Large Forest Fires, pp 91–108. Backhuys Publishers, Leiden

    Google Scholar 

  • Van Wilgen B.W. (1982). Some effects of post-fire age on the above-ground plant biomass of fynbos (macchia) vegetation in South Africa. J. Ecol. 70: 217–225

    Article  Google Scholar 

  • Van Wilgen B.W. (1984). Adaptation of the United States fire danger rating system to fynbos conditions. Part.I. A fuel model for fire danger rating in the fynbos biome. South Afr. Forestry J. 129: 13–17

    Google Scholar 

  • Whelan R.J. (1995). The Ecology of Fire. Cambridge University Press, New York

    Google Scholar 

  • Whittaker R.H. and Woodwell G.M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven forestNew York. J. Ecol. 56: 1–25

    Article  Google Scholar 

  • Whittaker R.H. and Marks P.L. (1975). Methods of assessing primary productivity. In: Leith, H. and Whittaker, R.H. (eds) Primary Productivity of the Biosphere, pp. Springer-Verlag, New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Baeza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeza, M.J., Raventós, J., Escarré, A. et al. Fire Risk and Vegetation Structural Dynamics in Mediterranean Shrubland. Plant Ecol 187, 189–201 (2006). https://doi.org/10.1007/s11258-005-3448-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-005-3448-4

Key words

Navigation