Skip to main content

Advertisement

Log in

Baseline characterization of major Iberian vegetation types based on the NDVI dynamics

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We present an approach to derive baseline conditions for the radiation intercepted by vegetation in the largest remaining patches of homogeneous vegetation of the Iberian Peninsula. These baseline conditions can serve as a reference to assess environmental changes. We also characterized the major vegetation types of the Peninsula in the functional space defined by the NDVI dynamics and analyzed the climatic controls of NDVI dynamics. We analysed the attributes of the NDVI seasonal dynamics: annual mean (NDVI-I), relative range (RREL), NDVI maximum and minimum values (MAX and MIN), months of MAX and MIN (MMAX and MMIN), and their inter-annual variabilities (1982–1999). We selected as reference sites only homogeneous pixels occupied by natural vegetation. We described their relationship with climatic variables using regression models. NDVI-I and RREL captured most of the variability of the NDVI annual profile. Eurosiberian vegetation types were more productive, with winter minima and summer maxima. Mediterranean vegetation had summer minima and maxima distributed from autumn to spring. Inter-annual differences (higher in the Mediterranean) were low for NDVI-I and MAX and high for RREL and MIN. Precipitation was the main driver of NDVI-I for the Mediterranean pixels while temperature constrained it in the Eurosiberian ones. Seasonality (RREL) was associated with winter temperatures in Eurosiberian areas and with summer drought in Mediterranean ones. The Iberian vegetation types mainly differed in terms of total production and seasonality. Such differences were related to mean and inter-annual variation in precipitation and temperature associated with the Eurosiberian and Mediterranean climate zones. The NDVI dynamics allowed us to identify a functional signature for each vegetation type which captures differences that go beyond their range of climatic factors. Our baseline descriptions, based on a common approach to characterize vegetation functioning, are proposed as reference situations to evaluate the impact of environmental changes on the remaining large patches of single major natural and seminatural vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcaraz-Segura D, Paruelo JM, Cabello J (2006) Identification of current ecosystem functional types in the Iberian Peninsula. Glob Ecol Biogeogr 15:200–212. doi:10.1111/j.1466-822X.2006.00215.x

    Article  Google Scholar 

  • Alcaraz-Segura D, Cabello J, Paruelo JM, Delibes M (2008a) Use of descriptors of ecosystem functioning for monitoring a National Park network: a remote sensing approach. Environ Manage. doi:10.1007/s00267-008-9154-y

  • Alcaraz-Segura D, Cabello J, Paruelo JM, Delibes M (2008b) Trends in the surface vegetation dynamics of the National Parks of Spain as observed by satellite sensors. Appl Veg Sci 11:431–440. doi:10.3170/2008-7-18522

    Google Scholar 

  • Baldi G, Nosetto MD, Aragón R, Aversa F, Paruelo JM, Jobbágy EG (2008) Long-term satellite NDVI data sets: evaluating their ability to detect ecosystem functional changes in South America. Sensors 8:5397–5425. doi:10.3390/s8095397

    Article  Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, New York

    Google Scholar 

  • Box EO, Holben BN, Kalb V (1989) Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89. doi:10.1007/BF00048034

    Article  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259. doi:10.1146/annurev.es.13.110182.001305

    Article  Google Scholar 

  • Costa M, Morla C, Sainz H (2005) Los bosques ibéricos: una interpretación geobotánica. Planeta, Barcelona

    Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Part III. Services supplied by major biomes. Island Press, Washington, DC

    Google Scholar 

  • de Beurs K, Henebry G (2007) War, drought, and phenology: changes in the land surface phenology of Afghanistan since 1982, vol 4. In: IEEE international conference on geoscience and remote sensing symposium, 2006 (IGARSS 2006), pp 2432–2435

  • de Castro M, Martín-Vide J, Alonso S (2005) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Moreno-Rodríguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, Madrid, pp 1–64

    Google Scholar 

  • del Barrio G, Creus J, Puigdefábregas J (1990) Thermal seasonality of the high mountain belts of the Pyrenees. Mt Res Dev 10:227–233. doi:10.2307/3673602

    Article  Google Scholar 

  • Di Castri F, Goodall DW, Specht RL (1981) Mediterranean-type shrublands. Elsevier, Amsterdam

    Google Scholar 

  • EEA (European Environmental Agency) (2000) The 1990 CORINE land cover database (CLC90—100 m grid—version 12, 2000)

  • EEA (European Environmental Agency) (2007) The 1990–2000 CORINE land cover change database (CLC90–CLC00—100 m grid—version 9, 2007)

  • Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124:63–73. doi:10.1016/j.biocon.2005.01.013

    Article  Google Scholar 

  • Garbulsky MF, Paruelo JM (2004) Remote sensing of protected areas to derive baseline vegetation functioning characteristics. J Veg Sci 15:711–720. doi:10.1658/1100-9233(2004)015[0711:RSOPAT]2.0.CO;2

    Google Scholar 

  • Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C (2002) Trends in North American net primary productivity derived from satellite observations, 1982–1998. Global Biogeochem Cycles 16(2). doi:10.1029-2001GB001550

  • Hoare D, Frost P (2004) Phenological description of natural vegetation in southern Africa using remotely-sensed vegetation data. Appl Veg Sci 7:19–28. doi:10.1658/1402-2001(2004)007[0019:PDONVI]2.0.CO;2

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images for temporal AVHRR data. Int J Remote Sens 7:1417–1434. doi:10.1080/01431168608948945

    Article  Google Scholar 

  • James ME, Kalluri SNV (1994) The Pathfinder AVHRR Land data set: an improved coarse resolution data set for terrestrial monitoring. Int J Remote Sens 15:3347–3363. doi:10.1080/01431169408954335

    Article  Google Scholar 

  • Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103:43–55. doi:10.1016/j.rse.2006.03.011

    Article  Google Scholar 

  • Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48:373–395. doi:10.1006/jare.2000.0755

    Article  Google Scholar 

  • Lieth H (1974) Phenology and seasonality. Springer-Verlag, Berlin

    Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Remote Sens 11:2269–2279. doi:10.1080/01431169008955174

    Article  Google Scholar 

  • Lobell DB, Hicke JA, Asner GP, Field CB, Tucker CJ, Los SO (2002) Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob Chang Biol 8:722–735. doi:10.1046/j.1365-2486.2002.00503.x

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144. doi:10.1038/341142a0

    Article  PubMed  CAS  Google Scholar 

  • Milchunas DG, Lauenroth WK (1995) Inertia in plant community structure: state changes after cessation of nutrient enrichment stress. Ecol Appl 5:1195–2005. doi:10.2307/1942035

    Article  Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252

    Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766. doi:10.2307/2401901

    Article  Google Scholar 

  • Montero de Burgos JL, González-Rebollar JL (1983) Diagramas bioclimáticos. Instituto para la Conservación de la Naturaleza, Madrid

    Google Scholar 

  • Mooney HA, Kummerow J, Johnons W, Parsons DJ, Keeley S, Hoffmann A, Hays RI, Giliberto J, Chu C (1977) The producers-their resources and adaptive responses. Convergent evolution in Chile and California. Mediterranean climate ecosystems. Dowden, Hutchinson & Ross, Stroudsburg, pp 85–143

    Google Scholar 

  • Mueller Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Myneni RB, Williams DL (1994) On the relationship between fAPAR and NDVI. Remote Sens Environ 49:200–211. doi:10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi:10.1126/science.1082750

    Article  PubMed  CAS  Google Scholar 

  • Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Paruelo JM, Lauenroth WK (1995) Regional patterns of Normalized Difference Vegetation Index in North American shrublands and grasslands. Ecology 76:1888–1898. doi:10.2307/1940721

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK (1998) Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. J Biogeogr 25:721–733. doi:10.1046/j.1365-2699.1998.2540721.x

    Article  Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the Central Grassland Region of the United States. Ecology 78:953–958

    Article  Google Scholar 

  • Paruelo JM, Jobbágy EG, Sala OE (2001) Current distribution of ecosystem functional types in temperate South America. Ecosystems 4:683–698. doi:10.1007/s10021-001-0037-9

    Article  Google Scholar 

  • Paruelo JM, Garbulsky MF, Guerschman JP, Jobbágy EG (2004) Two decades of Normalized Difference Vegetation Index changes in South America: identifying the imprint of global change. Int J Remote Sens 25:2793–2806. doi:10.1080/01431160310001619526

    Article  Google Scholar 

  • Paruelo JM, Piñeiro G, Oyonarte C, Alcaraz-Segura D, Cabello J, Escribano P (2005) Temporal and spatial patterns of ecosystem functioning in protected arid areas of Southeastern Spain. Appl Veg Sci 8:93–102. doi:10.1658/1402-2001(2005)008[0093:TASPOE]2.0.CO;2

    Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. doi:10.1016/j.tree.2005.05.011

    Article  PubMed  Google Scholar 

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. doi:10.1146/annurev.es.16.110185.001143

    Article  Google Scholar 

  • Rivas-Martínez S (1987) Mapa de series de vegetación de España 1:400000 y Memoria. ICONA, Madrid

    Google Scholar 

  • Rodó X, Comín F (2001) Fluctuaciones del clima mediterráneo: conexiones globales y consecuencias regionales. In: Zamora R, Pugnaire FI (eds) Aspectos funcionales de los ecosistemas mediterráneos. CSIC-AEET, Granada, pp 1–36

    Google Scholar 

  • Ruíz de la Torre J (1999) Mapa Forestal de España 1:200.000 - MFE200, Organismo Autónomo de Parques Nacionales. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Sánchez-Palomares O, Sánchez-Serrano F, Carretero-Carrero MP (1999) Modelos y cartografía de estimaciones climáticas termopluviométricas para la España peninsular. INIA, Madrid

    Google Scholar 

  • Sarkar C, Bhattacharya BK, Gadgil A, Mallick K, Patel NK, Parihar JS (2008) Estimation of relative evapotranspiration from NOAA PAL to derive growth characteristics in India. Int J Remote Sens 29:3271–3293. doi:10.1080/01431160701442112

    Article  Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216. doi:10.1016/0034-4257(92)90102-P

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised Land Surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–705. doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2

    Article  Google Scholar 

  • Sobrino JA, Julien Y, Morales L (2006) Multitemporal analysis of PAL images for teh study of land cover dynamics in South America. Glob Planet Chang 51:172–180. doi:10.1016/j.gloplacha.2006.01.006

    Article  Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135:649–670. doi:10.1086/285067

    Article  Google Scholar 

  • Stevenson AC, Harrison RJ (1992) Ancient forests in Spain: a model for land-use and dry forest management in south-west Spain from 4000 BC to 1900 AD. Proc Prehist Soc 58:227–247

    Google Scholar 

  • Townshend JRG, Goff TE, Tucker CJ (1985) Multitemporal dimensionality of images of Normalized Difference Vegetation Index at continental scales. IEEE Trans Geosci Remote Sens 23:888–895. doi:10.1109/TGRS.1985.289474

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote-sensing of primary production. Int J Remote Sens 7:1395–1416. doi:10.1080/01431168608948944

    Article  Google Scholar 

  • Tucker CJ, Townshend JR, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375. doi:10.1126/science.227.4685.369

    Article  PubMed  Google Scholar 

  • Valentini R, Baldocchi DD, Tenhunen JD (1999) Ecological controls on land-surface atmospheric interactions. In: Tenhunen JD, Kabat P (eds) Integrating hydrology, ecosystem dynamics and biogeochemistry in complex landscapes. Wiley, Berlin, pp 105–116

    Google Scholar 

  • Valladares F, Camarero JJ, Pulido F, Gil-Pelegrín E (2004) El bosque mediterráneo, un sistema humanizado y dinámico. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Organismo Autónomo de Parques Nacionales. Ministerio de Medio Ambiente, Madrid, pp 13–26

    Google Scholar 

  • Virginia RA, Wall DH (2001) Principles of ecosystem function. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 345–352

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Whittaker RH (1970) Communities and ecosystems. MacMillan, New York

    Google Scholar 

  • Wiegand T, Snyman HA, Kellner K, Paruelo JM (2004) Do grasslands have a memory: modeling phytomass production of a semiarid South African grassland. Ecosystems 7:243–258. doi:10.1007/s10021-003-0235-8

    Article  Google Scholar 

  • Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, van der Putten W, de Ruiter P, Rusek J, Wall DH, Wardle DA, Brussaard L, Dangerfield JM, Brown VK, Giller K, Hooper DU, Sala OE, Tiedje J, van Veen JA (2000) Effects of global changes on above and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience 50:1089–1098. doi:10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2

    Article  Google Scholar 

  • Xiao J, Moody A (2004) Photosynthetic activity of US biomes: responses to the spatial variability and seasonality of precipitation and temperature. Glob Chang Biol 10:437–451. doi:10.1111/j.1365-2486.2004.00745.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and two anonymous referees for their suggestions that improved the manuscript. P. Escribano, P. Durante, and M. Torres helped compositing the Spanish Forest Map. Financial support was given by Postdoctoral program of Ministerio de Educación y Ciencia, FEDER funds, Junta de Andalucía (projects RNM1288 and RNM1280), Organismo Autónomo de Parques Nacionales (project 066/2007), Ecología de Zonas Áridas Research Group, University of Almería, Proyecto Estratégico of the University of Buenos Aires, CONICET, and FONCYT. Satellite data were provided by the EOS-DAAC at Goddard Space Flight Center (NASA-NOAA). CORINE land-cover database was provided by the EIONET—European Environmental Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Alcaraz-Segura.

Appendix

Appendix

See Table 4

Table 4 Mahalanobis distances (lower left side) and F-values for the distances (upper right side) between the centroids of each vegetation type group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcaraz-Segura, D., Cabello, J. & Paruelo, J. Baseline characterization of major Iberian vegetation types based on the NDVI dynamics. Plant Ecol 202, 13–29 (2009). https://doi.org/10.1007/s11258-008-9555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9555-2

Keywords

Navigation