Skip to main content

Advertisement

Log in

Environmental factors interact with spatial processes to determine herbaceous species richness in woody field margins

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The species richness of hedges in an agricultural landscape may be determined by the environment and by the spatial processes which occur in that landscape. Here, we divided the environmental predictors into three groups: site conditions, hedge stand and landscape structure. We determined their independent and joint effects on the richness of four guilds of herbaceous species in 92 hedge stands in a north-Mediterranean intensive agricultural landscape. The fine—(at <250 m) and broad—(>550 m) spatial patterns of the key environmental predictors and the pure spatial effects on species richness were measured using a computation of the principal coordinates of a matrix of geographical neighbours integrated into a variation partitioning. The total explained variation of species richness among hedgerows was highest for wetland herbs (62 %), with increasing rates for rare plants (33 %), forest herbs (43 %) and arable weeds (47 %). 43–11 % of that variation was spatially structured and mostly explained by some of the key environmental predictors, such as proportion of a given landuse, presence of woody species and dead trees. This indicates that complex relationships between herbaceous species distribution and spatial processes exist in woody field margins and much of that is related to key factors which are spatially structured, both at fine or broad-scales, with implications for management and landuse planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson TN, Milberg P (1998) Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Sci 46:30–38

    CAS  Google Scholar 

  • ARPAV (2014) Principali variabili metereologiche. ARPAV, Servizio Informatica e Reti, Padova, Italy. http://www.arpa.veneto.it/. Accessed 18 July 2014

  • Astorga A, Heino J, Luoto M, Muotka T (2011) Freshwater biodiversity at regional extent: determinants of macroinvertebrate taxonomic richness in headwater streams. Ecography 34:705–713

    Article  Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. Forest Ecol Manag 254:1–15

    Article  Google Scholar 

  • Barr CJ, Gillespie MK (2000) Estimating hedgerow length and pattern characteristics in Great Britain using Countryside Survey data. J Environ Manag 60:23–32

    Article  Google Scholar 

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manag 60:7–22

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Boutin C, Benoîn J (1998) Intensity of agricultural practises and effects on adjacent habitats. Ecol Appl 8:544–557

    Article  Google Scholar 

  • Boutin C, Jobin B, Belanger L, Choiniere L (2001) Comparing weed composition in natural and planted hedgerows and in herbaceous field margins adjacent to crop fields. Can J Plant Sci 81:313–324

    Article  Google Scholar 

  • Bracco F, Marchiori S (2002) Floristic and vegetational aspects. In: Ruffo S (ed) Woodlands of the Po Plain—a fragmented labyrinth. Museo Friulano di Storia Naturale, Udine, pp 17–49

    Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Berlin

    Google Scholar 

  • de Blois S, Domon G, Bouchard A (2002) Factors affecting plant species distribution in hedgerows of southern Quebec. Biol Conserv 105:355–367

    Article  Google Scholar 

  • De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • Deckers B, Hermy M, Muys B (2004a) Factors affecting plant species composition of hedgerows: relative importance and hierarchy. Acta Oecol 26:23–37

    Article  Google Scholar 

  • Deckers B, Verheyen K, Hermy M, Muys B (2004b) Differential environmental response of plant functional types in hedgerow habitats. Basic Appl Ecol 5:551–566

    Article  Google Scholar 

  • Development Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Wien

    Google Scholar 

  • Devlaeminck R, Bossuyt B, Hermy M (2005) Seed dispersal from a forest into adjacent cropland. Agric Ecosyst Environ 107:57–64

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 6:493–506

    Article  Google Scholar 

  • Dixon PM, Weiner J, Mitchell-Olds T, Woodley R (1988) Erratum to ‘Bootstrapping the Gini coefficient of inequality’. Ecology 69:1307

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Dray S, Legendre P, Blanchet FG (2007) Packfor: R package for forward selection with permutation, Version 0.0-7

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Environ Monogr 67:345–366

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258

    Google Scholar 

  • Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manag 8:495–510

    Article  Google Scholar 

  • Gabriel D, Thies C, Tscharntke T (2005) Local diversity of arable weeds increases with landscape complexity. Perspect Plant Ecol 7:85–93

    Article  Google Scholar 

  • Guilhaumon F, Kindt R, Legendre P, O’Hara RB, Stevens MHH (2010) mmSAR: an R-package for multimodel species–area relationship inference. Ecography 33:420–424

    Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F (2011) Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecol 26:355–370

    Article  Google Scholar 

  • Hodgson JA, Moilanen A, Wintle BA, Thomas CD (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152

    Article  Google Scholar 

  • Kalkhan MA (2011) Spatial statistics: geospatial information modeling and thematic mapping. CRC Press, New York

    Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kleijn D, Verbeek M (2000) Factors affecting the species composition of arable field boundary vegetation. J Appl Ecol 37:256–266

    Article  Google Scholar 

  • Laliberté E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159:377–388

    Article  PubMed  Google Scholar 

  • Laliberté E, Norton DA, Tylianakis JM, Scott D (2010) Comparison of two sampling methods for quantifying changes in vegetation composition under rangeland development. Rangeland Ecol Manag 63:537–545

    Article  Google Scholar 

  • Latham PA, Zuuring HR, Coble DW (1998) A method for quantifying vertical forest structure. Forest Ecol Manag 104:157–170

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Borcard D, Blanchet G (2010) PCNM: PCNM spatial eigenfunction and principal coordinate analyses. R package

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21

    Article  Google Scholar 

  • Meeus JHA, Wijermans MP, Vroom MJ (1990) Agricultural landscapes in Europe and their transformation. Landscape Urban Plan 18:289–352

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563

    Article  Google Scholar 

  • Milsom TP, Sherwood AJ, Rose SC, Town SJ, Runham SR (2004) Dynamics and management of plant communities in ditches bordering arable fenland in eastern England. Agric Ecosyst Environ 103:85–99

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB, Stevens MHH (2008) Vegan: community ecology package. R package version 1.15-1

  • Olson DM, Wackers FL (2007) Management of field margins to maximise multiple ecological services. J Appl Ecol 44:13–21

    Article  Google Scholar 

  • Paoletti MG, Lorenzoni GG (1989) Agroecology patterns in northeastern Italy. Agric Ecosyst Environ 27:139–154

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Global Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Provincia di Treviso (2005) Carta dei Suoli del Veneto. Servizio Osservatorio Suoli e Rifiuti—Dipartimento Prov. di Treviso, Treviso

    Google Scholar 

  • Roy V, de Blois S (2008) Evaluating hedgerow corridors for the conservation of native forest herb diversity. Biol Conserv 141:298–307

    Article  Google Scholar 

  • Sanchez IA, Lassaletta L, McCollin D, Bunce RGH (2010) The effect of hedgerow loss on microclimate in the Mediterranean region: an investigation in Central Spain. Agroforest Syst 78:13–25

    Article  Google Scholar 

  • Schmidt M, Ewald J, Fischer A, Oheimb von G, Kriebitzsch W-U, Ellenberg H, Schmidt W (2003) Liste der Waldegefäßpflanzen Deutschlands. Mitt Bundesforsch.anst Forst- Holzwirtsch 212:1–68

  • Schmucki R, de Blois S (2009) Population structures and individual performances of Trillium grandiflorum in hedgerow and forest habitats. Plant Ecol 202:67–78

    Article  Google Scholar 

  • Shmida A, Ellner S (1984) Coexistence of plant species with similar niche. Vegetatio 58:29–55

    Google Scholar 

  • Sitzia T (2007) Hedgerows as corridors for woodland plants: a test on the Po Plain, northern Italy. Plant Ecol 188:235–252

    Article  Google Scholar 

  • Sitzia T, Trentanovi G (2011) Maggengo meadow patches enclosed by forests in the Italian Alps: evidence of landscape legacy on plant diversity. Biodivers Conserv 20:945–961

    Article  Google Scholar 

  • Sitzia T, Campagnaro T, Dainese M, Cierjacks A (2012) Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manag 285:85–91

    Article  Google Scholar 

  • Sitzia T, Trentanovi G, Marini L, Cattaneo D, Semenzato P (2013) Assessment of hedge stand types as determinants of woody species richness in rural field margins. iForest 6:201–208

    Article  Google Scholar 

  • Sitzia T, Pizzeghello D, Dainese M, Ertani A, Carletti P, Semenzato P, Nardi S, Cattaneo D (2014) Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant Soil. doi:10.1007/s11104-014-2177-7

    Google Scholar 

  • Tüxen R, Ellenberg H (1937) Der systematische und ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. Mitt Florist-soziol Arb.gem 3:171–184

    Google Scholar 

  • Veneto Regione (2009) Banca Dati della Copertura del Suolo delle Regione Veneto. Regione Veneto. Unità di Progetto per il SIT e la Cartografia, Venezia

    Google Scholar 

  • Watt TA, Buckley GP (eds) (1995) Hedgerow management and nature conservation. Imperial College Press, London

    Google Scholar 

  • Willi JC, Mountford JO, Sparks TH (2005) The modification of ancient woodland ground flora at arable edges. Biodivers Conserv 14:3215–3233

    Article  Google Scholar 

  • Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579

    Article  Google Scholar 

  • Zanaboni A, Lorenzoni GG (1989) The importance of relict vegetation and hedges in the agroecosystems and environment reconstruction. Agric Ecosyst Environ 27:155–161

    Article  Google Scholar 

  • Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci 23:419–431

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Marie Smolenova, Andrea Rizzi, Davide Cinquino and Alberto Tarabotti for their assistance in collecting the environmental and species data. We also acknowledge the assistance of Filippo Prosser and Roberto Masin in species determination and of Stefano Tasinazzo in grouping the species into arable weeds and rare species. Revisions on the paper were made during two visiting fellowships: to DM, within a 2013 visiting scientist grant by the University of Padova, under TS responsibility, and to TS at Northampton University, within an European Union LLP/Erasmus Teaching Staff bilateral agreement. MD was supported by a postdoctoral research fellowship "Grant" (Dept. TESAF Decree no. 36/ Protocol no. 1006/2011) mentored by TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sitzia.

Additional information

Communicated by J. L. Firn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitzia, T., Dainese, M. & McCollin, D. Environmental factors interact with spatial processes to determine herbaceous species richness in woody field margins. Plant Ecol 215, 1323–1335 (2014). https://doi.org/10.1007/s11258-014-0390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0390-3

Keywords

Navigation