Skip to main content
Log in

Linking functional traits to impacts of invasive plant species: a case study

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Our understanding of the link between plant functional traits and ecological impact of invasive alien plant species is fragmentary and the mechanisms leading to impacts are poorly understood. Moreover, current knowledge is heavily biased to the temperate regions of the world and we know much less about traits and impacts of invaders in tropical and subtropical ecosystems. We studied two leaf traits of the invasive alien shrub Chromolaena odorata and the impacts of its invasion on native vegetation in savannas. We compared specific leaf area (SLA) and leaf area index (LAI) between C. odorata and native species and assessed how C. odorata differentially affects canopy light interception, soil moisture, soil nutrients, and litter accumulation compared to native species. We found that C. odorata has higher SLA and LAI than native species, lower light and moisture levels below its canopy, but higher nutrient levels and a higher litter accumulation rate. Because of its higher SLA, C. odorata grows faster, resulting in more biomass, increased litter accumulation and higher nutrient availability. Due to its high SLA and LAI, C. odorata intercepts more light and reduces available moisture more than do native trees due to higher transpiration rates, reducing the biomass of native understory vegetation. This study provides empirical evidence for strong links between plant functional traits and ecological impact of invasive plant species, highlighting the importance of traits in predicting ecosystem-level impacts of invasive plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboh BA, Houinato M, Oumorou M, Sinsin B (2008) Invasiveness of two exotic species, Chromolaena odorata (Asteraceae) and Hyptis suaveolens (Lamiaceae), in relation with land use around Betecoucou (Benin). Belg J Bot 141:125–140

    Google Scholar 

  • Ambika SR (2002a) Allelopathic plants. 5. Chromolaena odorata (L) King and Robinson. Allelopath J 9:35–41

    Google Scholar 

  • Ambika SR (2002b) The influence of environmental factors on seedling growth in Chromolaena odorata. In: Zachariades C, Muniappan R, Strathie LW (eds) Proceedings of the 5th international workshop on Biological Control and Management of Chromolaena odorata. ARC-PPRI, Pretoria, pp 100–105

    Google Scholar 

  • Balfour D, Howison OE (2001) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. Afr J Range For Sci 19:43–51

    Google Scholar 

  • Bransby DI, Tainton NM (1977) The Disc Pasture meter: possible applications in grazing management. Proc Grassl Soc South Africa 12:115–118

    Article  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2011) Principles of Terrestrial Ecosystem Ecology. Springer, New York

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Diaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975

    Article  PubMed Central  PubMed  Google Scholar 

  • Drenovsky RE, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Annal Bot 110:141–153

    Article  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Ann Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Eppinga MB, Kaproth MA, Collins AR, Molofsky J (2011) Litter feedbacks, evolutionary change and exotic plant invasion. J Ecol 99:503–514

    Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Ann Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Feng YL, Wang JF, Sang WG (2007) Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecol 31:40–47

    Article  Google Scholar 

  • Foxcroft LC, Richardson DM, Rejmánek M, Pyšek P (2010) Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biol Inv 12:3913–3933

    Article  Google Scholar 

  • Gaertner M, Biggs R, Te Beest M, Molofsky J, Richardson DM (2014) Invasive plants as drivers of regime shifts: identifying high priority invaders that alter feedback relationships. Divers Distrib 20:733–744

    Article  Google Scholar 

  • Goodall JM, Erasmus DJ (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agr Ecosys Environ 56:151–164

    Article  Google Scholar 

  • Govender N, Trollope WSW, Van Wilgen BW (2006) The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J Appl Ecol 43:748–758

    Article  Google Scholar 

  • Grotkopp E, Erskine-Ogden J, Rejmánek M (2010) Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. J Appl Ecol 47:1320–1328

    Article  Google Scholar 

  • Honu YAK, Dang QL (2000) Responses of tree seedlings to the removal of Chromolaena odorata Linn. in a degraded forest in Ghana. For Ecol Manage 137:75–82

    Article  Google Scholar 

  • Howison OE (2009) The historical spread and potential distribution of the invasive alien plant Chromolaena odorata in Hluhluwe-iMfolozi park. MSc Thesis, University of Kwazulu-Natal, Durban

  • Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  • Kelliher F, Leuning R, Raupach M, Schulze ED (1995) Maximum conductances for evaporation from global vegetation types. Agr Forest Meteorol 73:1–16

    Article  Google Scholar 

  • Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Bacher S., Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mruga A, Pergl J, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Winter M (2015) Ecological impacts of alien species: quantification, scope, caveats and recommendations. BioScience (in press)

  • Li YP, Feng YL, Barclay G (2012) No evidence for evolutionarily decreased tolerance and increased fitness in invasive Chromolaena odorata: implications for invasiveness and biological control. Plant Ecol 213:1157–1166

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Liao ZY, Zhang R, Barclay GF, Feng YL (2013) Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments. PLoS ONE 8:e71767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macdonald IAW, Frame GW (1988) The invasion of introduced species into nature reserves in tropical savannas and dry woodlands. Biol Cons 44:67–93

    Article  Google Scholar 

  • Mangla S, Inderjit Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J Ecol 96:58–67

    Google Scholar 

  • Meisner A, de Boer W, Cornelissen JHC, van der Putten WH (2012) Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLoS ONE 7(2):e31596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muniappan R, Viraktamath CA (1993) Invasive alien weeds in the Western Ghats. Curr Sci Ind 64:555–558

    Google Scholar 

  • Niinemets U (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693–714

    Article  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Inv 1:3–19

    Article  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: Where do we stand? In: Nentwig W (ed) Biological Invasions. Springer, Berlin, pp 97–125

    Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biol 18:1725–1737

    Article  Google Scholar 

  • Qin RM, Zheng YL, Valiente-Banuet A, Callaway RM, Barclay GF, Pereyra CS, Feng YL (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol 197:979–988

    Article  PubMed  Google Scholar 

  • Raimundo RLG, Fonseca RL, Schachetti-Pereira R, Peterson AT, Lewinsohn TM (2007) Native and exotic distributions of siamweed (Chromolaena odorata) modelled using the genetic algorithm for rule-set production. Weed Sci 55:41–48

    Article  CAS  Google Scholar 

  • Ramakrishnan PS, Vitousek PM (1989) Ecosystem-level processes and the consequences of biological invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological Invasions - a global perspective. John Wiley & Sons, New York, pp 281–300

    Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing (Version 2.10.0 (2009-10-26)). R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species – 2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Higgins SI, Pitcairn M, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Mooney HA, McNeely JA, Neville L, Schei PJ, Waage J (eds) Invasive alien species: a new synthesis. Island Press, Washington DC, pp 104–162

    Google Scholar 

  • Robertson MP, Kriticos DJ, Zachariades C (2008) Climate matching techniques to narrow the search for biological control agents. Biol Control 46:442–452

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t!—population crashes of established introduced species. Biol Inv 6:161–172

    Article  Google Scholar 

  • Te Beest M, Stevens N, Olff H, Van der Putten WH (2009) Plant-soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata. J Ecol 97:1281–1290

    Article  Google Scholar 

  • Te Beest M, Cromsigt JPGM, Ngobese J, Olff H (2012) Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biol Inv 14:607–618

    Article  Google Scholar 

  • Te Beest M, Elschot K, Olff H, Etienne RS (2013) Invasion success in a marginal habitat: an experimental test of competitive ability and drought tolerance in Chromolaena odorata. PLoS ONE 8:e68274. doi:10.1371/journal.pone.0068274

    Article  Google Scholar 

  • Te Beest M, Mpandza NJ, Olff H (2014) Fire and simulated herbivory have antagonistic effects on resistance of savanna grasslands to alien shrub invasion. J Veg Sci. doi:10.1111/jvs.12208

    Google Scholar 

  • Tecco PA, Diaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J Ecol 98:17–27

    Article  Google Scholar 

  • Tomlinson KW, Sterck FJ, Bongers F, da Silva DA, Barbosa ERM, Ward D, Bakker FT, van Kaauwen M, Prins HHT, de Bie S, van Langevelde F (2012) Biomass partitioning and root morphology of savanna trees across a water gradient. J Ecol 100:1113–1121

    Article  Google Scholar 

  • Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Van Wilgen BW, Le Maitre DC, Cowling RM (1998) Ecosystem services, efficiency, sustainability and equity: south Africa’s Working for Water programme. Trends Ecol Evol 13:378

    Article  PubMed  Google Scholar 

  • Vilà M, Espinar J, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Weigelt A, Jolliffe P (2003) Indices of plant competition. J Ecol 91:707–720

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Whateley A, Porter RN (1983) The woody vegetation communities of the Hluhluwe-Corridor-Umfolozi Game Reserve complex. Bothalia 14:745–758

    Google Scholar 

  • Witkowski ETF, Wilson M (2001) Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecol 152:13–27

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Rest Ecol 12:44–51

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ezemvelo KZN Wildlife research and management staff of Hluhluwe-iMfolozi Park for providing support for the study, H. Olff for help in designing the individual studies, and R. Howison, O. Howison, J. Herder, M. van Hoppe, K. Boeke, N. Stevens, C. Gosling and the SABRE team for their help with the data collection. MtB acknowledges support from the Dutch Scientific Organization (NWO-Pionier to H. Olff), Stellenbosch University (Sub Committee B to KJE) and the Nordic Centre of Excellence TUNDRA, funded by the Norden Top-Level Research Initiative “Effect Studies and Adaptation to Climate Change”. KJE and DMR acknowledge support from the National Research Foundation (Grant 85417 to DMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariska te Beest.

Additional information

Communicated by Kathryn Yurkonis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

te Beest, M., Esler, K.J. & Richardson, D.M. Linking functional traits to impacts of invasive plant species: a case study. Plant Ecol 216, 293–305 (2015). https://doi.org/10.1007/s11258-014-0437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0437-5

Keywords

Navigation