Skip to main content
Log in

Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We study the connections between discrete one-dimensional schemes for nonlinear diffusion and shift-invariant Haar wavelet shrinkage. We show that one step of a (stabilised) explicit discretisation of nonlinear diffusion can be expressed in terms of wavelet shrinkage on a single spatial level. This equivalence allows a fruitful exchange of ideas between the two fields. In this paper we derive new wavelet shrinkage functions from existing diffusivity functions, and identify some previously used shrinkage functions as corresponding to well known diffusivities. We demonstrate experimentally that some of the diffusion-inspired shrinkage functions are among the best for translation-invariant multiscale wavelet denoising. Moreover, by transferring stability notions from diffusion filtering to wavelet shrinkage, we derive conditions on the shrinkage function that ensure that shift invariant single-level Haar wavelet shrinkage is maximum–minimum stable, monotonicity preserving, and variation diminishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, R. and Vogel, C.R. 1994. Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 10:1217–1229.

    Article  Google Scholar 

  • Andreu, F., Ballester, C., Caselles, V. and Mazòn, J.M. 2001. Minimizing total variation flow. Differential and Integral Equations, 14(3):321–360.

    Google Scholar 

  • Bao, Y. and Krim, H. 2001. Towards bridging scale-space and multiscale frame analyses. In Wavelets in Signal and Image Analysis, Vol. 19 of Computational Imaging and Vision, A.A. Petrosian and F.G. Meyer (Eds.), Dordrecht: Kluwer, Chapt. 6.

  • Black, M.J., Sapiro, G., Marimont, D.H., and Heeger, D. 1998. Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421–432.

    Article  Google Scholar 

  • Brox, T., Welk, M., Steidl, G. and Weickert, J. 2003. Equivalence results for {TV} diffusion and TV regularisation. In L.D. Griffin and M. Lillholm (Eds.), Scale-Space Methods in Computer Vision, Vol. 2695 of Lecture Notes in Computer Science, Springer: Berlin, pp. 86–100.

    Google Scholar 

  • Candès, E.J. and Guo, F. 2002. New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing, 82(11):1519–1543.

    Article  Google Scholar 

  • Chambolle, A., DeVore, R.A., Lee, N. and Lucier, B.L. 1998. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 7(3):319–335.

    Article  Google Scholar 

  • Chambolle, A. and Lucier, B.L. 2001. Interpreting translationally-invariant wavelet shrinkage as a new image smoothing scale space. IEEE Transactions on Image Processing, 10(7):993–1000.

    Article  Google Scholar 

  • Chan, T.F. and Zhou, H.M. 2000. Total variation improved wavelet thresholding in image compression. In Proc. Seventh International Conference on Image Processing, Vancouver, Canada.

  • Charbonnier, P., Blanc-Féraud, L., Aubert, G. and Barlaud, M. 1994. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. 1994 IEEE International Conference on Image Processing, Vol. 2. IEEE Computer Society Press: Austin, TX, pp. 168–172.

  • Cohen, A., DeVore, R., Petrushev, P., and Xu, H. 1999. Nonlinear approximation and the space BV(R2). American Journal of Mathematics, 121:587–628.

    Google Scholar 

  • Coifman, R.R. and Donoho, D. 1995. Translation invariant denoising. In Wavelets in Statistics, A. Antoine and G. Oppenheim (Eds.), Springer: New York: pp. 125–150.

    Google Scholar 

  • Coifman, R.R. and Sowa, A. 2000. Combining the calculus of variations and wavelets for image enhancement. Applied and Computational Harmonic Analysis, 9(1):1–18.

    Article  Google Scholar 

  • Coifman, R.R. and Sowa, A. 2001. New methods of controlled total variation reduction for digital functions. SIAM Journal on Numerical Analysis, 39(2):480–498.

    Article  Google Scholar 

  • Crank, J. 1975. The Mathematics of Diffusion, 2nd edition, Oxford University Press: Oxford.

    Google Scholar 

  • Donoho, D.L. 1995. De-noising by soft thresholding. IEEE Transactions on Information Theory, 41:613–627.

    Article  Google Scholar 

  • Donoho, D.L. and Johnstone, I.M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrica, 81(3):425–455.

    Google Scholar 

  • Durand, S. and Froment, J. 2003. Reconstruction of wavelet coefficients using total-variation minimization. SIAM Journal on Scientific Computing, 24(5):1754–1767.

    Article  Google Scholar 

  • Gao, H. 1998. Wavelet shrinkage denoising using the non-negative Garrote. Journal of Computational and Graphical Statistics, 7(4):469–488.

    Google Scholar 

  • Gao, H. and Bruce, A.G. 1997. WaveShrink with firm shrinkage. Statistica Sinica, 7:855–874.

    Google Scholar 

  • Gilboa, G., Sochen, N.A., and Zeevi, Y.Y. 2002. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, 11(7):689–703.

    Article  Google Scholar 

  • Glashoff, K. and Kreth, H. 1980. V}orzeichenstabile Differenzenverfahren für parabolische Anfangswertaufgaben. Numerische Mathematik, 35:343–354.

    Article  Google Scholar 

  • Holschneider, M., Kronland-Martinet, R., Morlet, J., and Tchamitchian, P. 1989. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets: Time-Frequency Methods and Phase Space, J.M. Combes, A. Grossman, and P. Tchamitchian (Eds.), Springer: Berlin: pp. 286–297.

    Google Scholar 

  • Hummel, R.A. 1986. Representations based on zero-crossings in scale space. In Proc. 1986 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press: Miami Beach, FL, pp. 204–209.

  • Iijima, T. 1962. Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory, 26:368–388. (In Japanese).

    Google Scholar 

  • Karlin, S. 1968. Total Positivity, Stanford University Press.

  • Kawohl, B. and Kutev, N. 1998. Maximum and comparison principle for one-dimensional anisotropic diffusion. Mathematische Annalen, 311:107–123.

    Article  Google Scholar 

  • Keeling, S.L. and Stollberger, R. 2002. Nonlinear anisotropic diffusion filters for wide range edge sharpening. Inverse Problems, 18:175–190.

    Article  Google Scholar 

  • Kichenassamy, S. 1997. The Perona–Malik paradox. SIAM Journal on Applied Mathematics, 57:1343–1372.

    Article  Google Scholar 

  • Malgouyres, F. 2001. Combining total variation and wavelet packet approaches for image deblurring. In Proc. First IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada, IEEE Computer Society Press, pp. 57–64.

  • Malgouyres, F. 2002. Mathematical analysis of a model which combines total variation and wavelet for image restoration. Inverse Problems, 2(1):1–10.

    Google Scholar 

  • Mallat, S. 1999. A Wavelet Tour of Signal Processing, 2nd edition. Academic Press: San Diego.

    Google Scholar 

  • Mràzek, P. and Weickert, J. 2003. Rotationally invariant wavelet shrinkage. In Pattern Recognition, B. Michaelis and G. Krell (Eds.), Vol. 2781 of Lecture Notes in Computer Science, Springer: Berlin, pp. 156–163.

  • Mràzek, P., Weickert, J., and Steidl, G. 2003a. Correspondences between wavelet shrinkage and nonlinear diffusion. In Scale-Space Methods in Computer Vision, L.D. Griffin and M. Lillholm (Eds.), Vol. 2695 of Lecture Notes in Computer Science, Springer: Berlin, pp. 101–116.

  • Mràzek, P., Weickert, J., Steidl, G., and Welk, M. 2003b. On iterations and scales of nonlinear filters. In Proc. Eighth Computer Vision Winter Workshop O. Drbohlav (Ed.),. Valtice, Czech Pattern Recognition Society, Czech Republic, pp. 61–66.

  • Perona, P. and Malik, J. 1990. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–639.

    Article  Google Scholar 

  • Rudin, L.I., Osher, S. and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268.

    Google Scholar 

  • Schoenberg, I.J. 1930. Über variationsvermindernde lineare Transformationen. Mathematische Zeitschrift, 32:321–328.

    Article  Google Scholar 

  • Smolka, B. 2002. Combined forward and backward anisotropic diffusion filtering of color images. In Pattern Recognition, L. Van Gool (Ed.), Vol. 2449 of Lecture Notes in Computer Science, Springer: Berlin, pp. 314–320.

    Google Scholar 

  • Starck, J., Murtagh, F., Candès, E., and Donoho, D.L. 2003. Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing, 12(6): 706–717.

    Article  Google Scholar 

  • Steidl, G. and Weickert, J. 2002. Relations between soft wavelet shrinkage and total variation denoising. In Pattern Recognition, L. Van Gool (Ed.), Vol. 2449 of Lecture Notes in Computer Science, Berlin: Springer, pp. 198–205.

    Google Scholar 

  • Steidl, G., Weickert, J., Brox, T., Mrázek, P., and Welk, M. 2004. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis, 42(2):686–713.

    Article  MathSciNet  Google Scholar 

  • Sturm, C. 1836. Sur une classe d’equations á differences partielles. Journal de Mathématiques Pures et Appliquées, 1:373–444.

    Google Scholar 

  • Varga, R.S. 1962. Matrix Iterative Analysis, Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Weickert, J. 1998. Anisotropic Diffusion in Image Processing, Stuttgart: Teubner.

    Google Scholar 

  • Weickert, J. and Benhamouda, B. 1997. A semidiscrete nonlinear scale-space theory and its relation to the Perona–Malik paradox. In Advances in Computer Vision, F. Solina, W.G. Kropatsch, R. Klette, and R. Bajcsy (Eds.), Springer: Wien: pp. 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Mrázek.

Additional information

First online version published in June, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrázek, P., Weickert, J. & Steidl, G. Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising. Int J Comput Vision 64, 171–186 (2005). https://doi.org/10.1007/s11263-005-1842-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-1842-y

Keywords

Navigation