Skip to main content
Log in

From Images to Shape Models for Object Detection

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the boundaries of objects, rather than just their bounding-boxes. This is achieved by a novel technique for learning a shape model of an object class given images of example instances. Furthermore, we also integrate Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately and does not need segmented examples for training (only bounding-boxes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basri, R., Costa, L., Geiger, D., & Jacobs, D. (1998). Determining the similarity of deformable shapes. Vision Research, 38, 2365–2385.

    Article  Google Scholar 

  • Belongie, S., & Malik, J. (2002). Shape matching and object recognition using shape contexts. Pattern Analysis and Machine Intelligence, 24(4), 509–522.

    Article  Google Scholar 

  • Berg, A., Berg, T., & Malik, J. (2005). Shape matching and object recognition using low distortion correspondence, CVPR.

  • Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmentation, ECCV.

  • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. CVIU, 89(2–3), 114–141.

    MATH  Google Scholar 

  • Chum, O., & Zisserman, A. (2007). An exemplar model for learning object classes, CVPR.

  • Cootes, T. (2000). An introduction to active shape models.

  • Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models: Their training and application. CVIU, 61(1), 38–59.

    Google Scholar 

  • Cremers, D., Kohlberger, T., & Schnorr, C. (2002). Nonlinear shape statistics in Mumford-Shah based segmentation, ECCV.

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection, CVPR.

  • Elidan, G., Heitz, G., & Koller, D. (2006). Learning object shape: From drawings to images, CVPR.

  • Felzenswalb, P. (2005). Representation and detection of deformable shapes. Pattern Analysis and Machine Intelligence, 27(2), 208–220.

    Article  Google Scholar 

  • Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning, CVPR.

  • Ferrari, V., Tuytelaars, T., & van Gool, L. (2004). Simultaneous object recognition and segmentation by image exploration, ECCV.

  • Ferrari, V., Tuytelaars, T., & Van Gool, L. (2006). Object detection with contour segment networks, ECCV.

  • Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection with deformable shape models learnt from images, CVPR.

  • Ferrari, V., Fevrier, L., Jurie, F., & Schmid, C. (2008). Groups of adjacent contour segments for object detection. Pattern Analysis and Machine Intelligence, 30(1), 36–51.

    Article  Google Scholar 

  • Fritz, M., & Schiele, B. (2006). Towards unsupervised discovery of visual categories, DAGM.

  • Fritz, M., & Schiele, B. (2008). Decomposition, discovery and detection of visual categories using topic models, CVPR.

  • Gavrila, D. (1998). Multi-feature hierarchical template matching using distance transforms, ICPR.

  • Gdalyahu, Y., & Weinshall, D. (1999). Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. Pattern Analysis and Machine Intelligence, 21(12), 1312–1328.

    Article  Google Scholar 

  • Gold, S., & Rangarajan, A. (1996). Graduated assignment algorithm for graph matching. Pattern Analysis and Machine Intelligence, 18(4), 377–388.

    Article  Google Scholar 

  • Hill, A., & Taylor, C. (1996). A method of non-rigid correspondence for automatic landmark identification, BMVC.

  • Jurie, F., & Schmid, C. (2004). Scale-invariant shape features for recognition of object categories, CVPR.

  • Lamdan, Y., Schwartz, J., & Wolfson, H. (1990). Affine invariant model-based object recognition. IEEE Transactions on Robotics and Automation, 6(5), 578–589.

    Article  Google Scholar 

  • Leibe, B., & Schiele, B. (2004). Scale-invariant object categorization using a scale-adaptive mean-shift search, DAGM.

  • Leordeanu, M., Hebert, M., & Sukthankar, R. (2007). Beyond local appearance: Category recognition from pairwise interactions of simple features, CVPR.

  • Martin, D., Fowlkes, C., & Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. Pattern Analysis and Machine Intelligence, 26(5), 530–549.

    Article  Google Scholar 

  • Mokhtarian, F., & Mackworth, A. (1986). Scale-based description and recognition of planar curves and two-dimensional shapes. Pattern Analysis and Machine Intelligence, 8(1), 34–43.

    Article  Google Scholar 

  • Opelt, A., Pinz, A., & Zisserman, A. (2006). A boundary-fragment-model for object detection, ECCV.

  • Pentland, A., & Sclaroff, S. (1991). Closed-form solutions for physically based shape modeling and recognition. Pattern Analysis and Machine Intelligence, 13(7), 715–729.

    Article  Google Scholar 

  • Quack, T., Ferrari, V., Leibe, B., & Van Gool, L. (2007). Efficient mining of frequent and distinctive feature configurations, ICCV.

  • Ramanan, D. (2006). Learning to parse images of articulated bodies, NIPS.

  • Ravishankar, S., Jain, A., & Mittal, A. (2008). Multi-stage contour based detection of deformable objects, ECCV.

  • Schwartz, J., & Felzenszwalb, P. (2007). Hierarchical matching of deformable shapes, CVPR.

  • Sharvit, D., Chan, J., Tek, H., & Kimia, B. (1998). Symmetry-based indexing of image databases. IEEE workshop on content-based access of image and video libraries.

  • Shotton, J., Blake, A., & Cipolla, R. (2005). Contour-based learning for object detection, ICCV.

  • Sebastian, T., Klein, P., & Kimia, B. (2004). Recognition of shapes by editing their shock graphs. Pattern Analysis and Machine Intelligence, 26(5), 550–571.

    Article  Google Scholar 

  • Torralba, A., Murphy, K., & Freeman, W. (2004). Sharing features: Efficient boosting procedures for multiclass object detection, CVPR.

  • Winn, J., & Jojic, N. (2005). LOCUS: Learning object classes with unsupervised segmentation, ICCV.

  • Winn, J., & Shotton, J. (2006). The layout consistent random field for recognizing and segmenting partially occluded objects, CVPR.

  • Zhu, Q., Song, G., & Shi, J. (2007). Untangling cycles for contour grouping, ICCV.

  • Zhu, Q., Wang, L., Wu, Y., & Shi, J. (2008). Contour context selection for object detection: A set-to-set contour matching approach, ECCV.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Ferrari.

Additional information

This research was supported by the EADS foundation, INRIA, CNRS, and SNSF. V. Ferrari was funded by a fellowship of the EADS foundation and by SNSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, V., Jurie, F. & Schmid, C. From Images to Shape Models for Object Detection. Int J Comput Vis 87, 284–303 (2010). https://doi.org/10.1007/s11263-009-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0270-9

Keywords

Navigation