Skip to main content
Erschienen in: International Journal of Computer Vision 1/2013

01.01.2013

A Computational Learning Theory of Active Object Recognition Under Uncertainty

verfasst von: Alexander Andreopoulos, John K. Tsotsos

Erschienen in: International Journal of Computer Vision | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present some theoretical results related to the problem of actively searching a 3D scene to determine the positions of one or more pre-specified objects. We investigate the effects that input noise, occlusion, and the VC-dimensions of the related representation classes have in terms of localizing all objects present in the search region, under finite computational resources and a search cost constraint. We present a number of bounds relating the noise-rate of low level feature detection to the VC-dimension of an object representable by an architecture satisfying the given computational constraints. We prove that under certain conditions, the corresponding classes of object localization and recognition problems are efficiently learnable in the presence of noise and under a purposive learning strategy, as there exists a polynomial upper bound on the minimum number of examples necessary to correctly localize the targets under the given models of uncertainty. We also use these arguments to show that passive approaches to the same problem do not necessarily guarantee that the problem is efficiently learnable. Under this formulation, we prove the existence of a number of emergent relations between the object detection noise-rate, the scene representation length, the object class complexity, and the representation class complexity, which demonstrate that selective attention is not only necessary due to computational complexity constraints, but it is also necessary as a noise-suppression mechanism and as a mechanism for efficient object class learning. These results concretely demonstrate the advantages of active, purposive and attentive approaches for solving complex vision problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aloimonos, J., Bandopadhay, A., & Weiss, I. (1988). Active vision. International Journal of Computer Vision, 1, 333–356. CrossRef Aloimonos, J., Bandopadhay, A., & Weiss, I. (1988). Active vision. International Journal of Computer Vision, 1, 333–356. CrossRef
Zurück zum Zitat Andreopoulos, A., & Tsotsos, J. K. (2008). Active vision for door localization and door opening using playbot: A computer controlled wheelchair for people with mobility impairments. In Proc. 5th Canadian conference on computer and robot vision. Andreopoulos, A., & Tsotsos, J. K. (2008). Active vision for door localization and door opening using playbot: A computer controlled wheelchair for people with mobility impairments. In Proc. 5th Canadian conference on computer and robot vision.
Zurück zum Zitat Andreopoulos, A., & Tsotsos, J. K. (2009). A theory of active object localization. In Proc. int. conf. on computer vision. Andreopoulos, A., & Tsotsos, J. K. (2009). A theory of active object localization. In Proc. int. conf. on computer vision.
Zurück zum Zitat Andreopoulos, A., & Tsotsos, J. K. (2012). On sensor bias in experimental methods for comparing interest point, saliency and recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 110–126. CrossRef Andreopoulos, A., & Tsotsos, J. K. (2012). On sensor bias in experimental methods for comparing interest point, saliency and recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 110–126. CrossRef
Zurück zum Zitat Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J. K., & Körner, E. (2011). Active 3D object localization using a humanoid robot. IEEE Transactions on Robotics, 27(1), 47–64. CrossRef Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J. K., & Körner, E. (2011). Active 3D object localization using a humanoid robot. IEEE Transactions on Robotics, 27(1), 47–64. CrossRef
Zurück zum Zitat Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343–370. Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343–370.
Zurück zum Zitat Aristotle (350 B.C.) \(\varPi\epsilon\rho\acute{\iota}\) \(\varPsi\upsilon\chi\acute{\eta}\varsigma\) (On the Soul). Aristotle (350 B.C.) \(\varPi\epsilon\rho\acute{\iota}\) \(\varPsi\upsilon\chi\acute{\eta}\varsigma\) (On the Soul).
Zurück zum Zitat Bajcsy, R. (1985). Active perception vs. passive perception. In IEEE workshop on computer vision representation and control, Bellaire, Michigan. Bajcsy, R. (1985). Active perception vs. passive perception. In IEEE workshop on computer vision representation and control, Bellaire, Michigan.
Zurück zum Zitat Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57–86. CrossRef Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57–86. CrossRef
Zurück zum Zitat Barrow, H., & Popplestone, R. (1971). Relational descriptions in picture processing. Machine Intelligence, 6, 377–396. Barrow, H., & Popplestone, R. (1971). Relational descriptions in picture processing. Machine Intelligence, 6, 377–396.
Zurück zum Zitat Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research, 3, 463–482. MathSciNet Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research, 3, 463–482. MathSciNet
Zurück zum Zitat Bartlett, P. L., Long, P. M., & Williamson, R. C. (1996). Fat-shattering and the learnability of real-valued functions. Journal of Computer and System Sciences, 52, 434–452. MATHCrossRefMathSciNet Bartlett, P. L., Long, P. M., & Williamson, R. C. (1996). Fat-shattering and the learnability of real-valued functions. Journal of Computer and System Sciences, 52, 434–452. MATHCrossRefMathSciNet
Zurück zum Zitat Baum, E., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151–160. CrossRef Baum, E., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151–160. CrossRef
Zurück zum Zitat Ben-David, S., & Lindenbaum, M. (1998). Localization vs. identification of semi-algebraic sets. Machine Learning, 32, 207–224. MATHCrossRef Ben-David, S., & Lindenbaum, M. (1998). Localization vs. identification of semi-algebraic sets. Machine Learning, 32, 207–224. MATHCrossRef
Zurück zum Zitat Biederman, I. (1987). Recognition-by-components: a theory of human image understanding. Psychological Review, 94, 115–147. CrossRef Biederman, I. (1987). Recognition-by-components: a theory of human image understanding. Psychological Review, 94, 115–147. CrossRef
Zurück zum Zitat Boshra, M., & Bhanu, B. (2000). Predicting performance of object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 956–969. CrossRef Boshra, M., & Bhanu, B. (2000). Predicting performance of object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 956–969. CrossRef
Zurück zum Zitat Brentano, F. (1874). Psychologie vom empirischen Standpunkt. Leipzig: Meiner. Brentano, F. (1874). Psychologie vom empirischen Standpunkt. Leipzig: Meiner.
Zurück zum Zitat Broadbent, D. (1958). Perception and communication. Elmsford: Pergamon Press. CrossRef Broadbent, D. (1958). Perception and communication. Elmsford: Pergamon Press. CrossRef
Zurück zum Zitat Brooks, R., Greiner, R., & Binford, T. (1979). The ACRONYM model-based vision system. In Proc. of 6th int. joint conf. on artificial intelligence. Brooks, R., Greiner, R., & Binford, T. (1979). The ACRONYM model-based vision system. In Proc. of 6th int. joint conf. on artificial intelligence.
Zurück zum Zitat Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention and visual search: an information theoretic approach. Journal of Vision, 9(3), 1–24. CrossRef Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention and visual search: an information theoretic approach. Journal of Vision, 9(3), 1–24. CrossRef
Zurück zum Zitat Callari, F., & Ferrie, F. (2001). Active recognition: looking for differences. International Journal of Computer Vision, 43(3), 189–204. MATHCrossRef Callari, F., & Ferrie, F. (2001). Active recognition: looking for differences. International Journal of Computer Vision, 43(3), 189–204. MATHCrossRef
Zurück zum Zitat de Berg, M., van Krefeld, M., Overmars, M., & Schwarzkopf, O. (2000). Computational geometry: algorithms and applications. Berlin: Springer. MATH de Berg, M., van Krefeld, M., Overmars, M., & Schwarzkopf, O. (2000). Computational geometry: algorithms and applications. Berlin: Springer. MATH
Zurück zum Zitat Dickinson, S., Christensen, H., Tsotsos, J., & Olofsson, G. (1997). Active object recognition integrating attention and viewpoint control. Computer Vision and Image Understanding, 67(3), 239–260. CrossRef Dickinson, S., Christensen, H., Tsotsos, J., & Olofsson, G. (1997). Active object recognition integrating attention and viewpoint control. Computer Vision and Image Understanding, 67(3), 239–260. CrossRef
Zurück zum Zitat Dickinson, S., Wilkes, D., & Tsotsos, J. (1999). A computational model of view degeneracy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 673–689. CrossRef Dickinson, S., Wilkes, D., & Tsotsos, J. (1999). A computational model of view degeneracy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 673–689. CrossRef
Zurück zum Zitat Ekvall, S., Jensfelt, P., & Kragic, D. (2006). Integrating active mobile robot object recognition and SLAM in natural environments. In Proc. Intelligent robots and systems. Ekvall, S., Jensfelt, P., & Kragic, D. (2006). Integrating active mobile robot object recognition and SLAM in natural environments. In Proc. Intelligent robots and systems.
Zurück zum Zitat Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: the psychology of looking and seeing. London: Oxford University Press. CrossRef Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: the psychology of looking and seeing. London: Oxford University Press. CrossRef
Zurück zum Zitat Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. MATHCrossRef Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. MATHCrossRef
Zurück zum Zitat Garvey, T. (1976). Perceptual strategies for purposive vision (Tech. rep., Nr. 117). SRI Int’l. Garvey, T. (1976). Perceptual strategies for purposive vision (Tech. rep., Nr. 117). SRI Int’l.
Zurück zum Zitat Gerstner, W., & Kistler, W. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press. MATHCrossRef Gerstner, W., & Kistler, W. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press. MATHCrossRef
Zurück zum Zitat Gibson, J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin. Gibson, J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Zurück zum Zitat Giefing, G., Janssen, H., & Mallot, H. (1992). Saccadic object recognition with an active vision system. In International conference on pattern recognition. Giefing, G., Janssen, H., & Mallot, H. (1992). Saccadic object recognition with an active vision system. In International conference on pattern recognition.
Zurück zum Zitat Grimson, W. E. L. (1991). The combinatorics of heuristic search termination for object recognition in cluttered environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 920–935. CrossRef Grimson, W. E. L. (1991). The combinatorics of heuristic search termination for object recognition in cluttered environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 920–935. CrossRef
Zurück zum Zitat Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 213–257. MATHMathSciNet Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 213–257. MATHMathSciNet
Zurück zum Zitat Hinton, G. (1978). Relaxation and its role in vision. PhD thesis, University of Edinburgh. Hinton, G. (1978). Relaxation and its role in vision. PhD thesis, University of Edinburgh.
Zurück zum Zitat Ikeuchi, K., & Kanade, T. (1988). Automatic generation of object recognition programs. Proceedings of the IEEE, 76(8), 1016–1035. CrossRef Ikeuchi, K., & Kanade, T. (1988). Automatic generation of object recognition programs. Proceedings of the IEEE, 76(8), 1016–1035. CrossRef
Zurück zum Zitat Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259. CrossRef Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259. CrossRef
Zurück zum Zitat Kearns, M. (1993). Efficient noise-tolerant learning from statistical queries. In Proc. of the 25th ACM symposium on the theory of computing. Kearns, M. (1993). Efficient noise-tolerant learning from statistical queries. In Proc. of the 25th ACM symposium on the theory of computing.
Zurück zum Zitat Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge: MIT Press. Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge: MIT Press.
Zurück zum Zitat Laporte, C., & Arbel, T. (2006). Efficient discriminant viewpoint selection for active Bayesian recognition. International Journal of Computer Vision, 68(3), 267–287. CrossRef Laporte, C., & Arbel, T. (2006). Efficient discriminant viewpoint selection for active Bayesian recognition. International Journal of Computer Vision, 68(3), 267–287. CrossRef
Zurück zum Zitat Lindenbaum, M. (1997). An integrated model for evaluating the amount of data required for reliable recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1251–1264. CrossRef Lindenbaum, M. (1997). An integrated model for evaluating the amount of data required for reliable recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1251–1264. CrossRef
Zurück zum Zitat Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. New York: Freeman. Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. New York: Freeman.
Zurück zum Zitat Maver, J., & Bajcsy, R. (1993). Occlusions as a guide for planning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 417–433. CrossRef Maver, J., & Bajcsy, R. (1993). Occlusions as a guide for planning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 417–433. CrossRef
Zurück zum Zitat McAllester, D. A. (2003). Pac-Bayesian stochastic model selection. Machine Learning, 51, 5–21. MATHCrossRef McAllester, D. A. (2003). Pac-Bayesian stochastic model selection. Machine Learning, 51, 5–21. MATHCrossRef
Zurück zum Zitat Meger, D., Forssen, P., Lai, K., Helmer, S., McCann, S., Southey, T., Baumann, M., Little, J., & Lowe, D. (2008). Curious George: an attentive semantic robot. Robotics and Autonomous Systems, 56(6), 503–511. CrossRef Meger, D., Forssen, P., Lai, K., Helmer, S., McCann, S., Southey, T., Baumann, M., Little, J., & Lowe, D. (2008). Curious George: an attentive semantic robot. Robotics and Autonomous Systems, 56(6), 503–511. CrossRef
Zurück zum Zitat Minsky, M., & Papert, S. (1969) Perceptrons. Cambridge, MIT Press. MATH Minsky, M., & Papert, S. (1969) Perceptrons. Cambridge, MIT Press. MATH
Zurück zum Zitat Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387–391. CrossRef Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387–391. CrossRef
Zurück zum Zitat Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–231. CrossRef Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–231. CrossRef
Zurück zum Zitat Nevatia, R., & Binford, T. (1977). Description and recognition of curved objects. Artificial Intelligence, 8, 77–98. MATHCrossRef Nevatia, R., & Binford, T. (1977). Description and recognition of curved objects. Artificial Intelligence, 8, 77–98. MATHCrossRef
Zurück zum Zitat Rimey, R. D., & Brown, C. M. (1994). Control of selective perception using Bayes nets and decision theory. International Journal of Computer Vision, 12(2/3), 173–207. CrossRef Rimey, R. D., & Brown, C. M. (1994). Control of selective perception using Bayes nets and decision theory. International Journal of Computer Vision, 12(2/3), 173–207. CrossRef
Zurück zum Zitat Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. CrossRefMathSciNet Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. CrossRefMathSciNet
Zurück zum Zitat Roy, S. D., Chaudhury, S., & Banerjee, S. (2000). Isolated 3D object recognition through next view planning. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 30(1), 67–76. CrossRef Roy, S. D., Chaudhury, S., & Banerjee, S. (2000). Isolated 3D object recognition through next view planning. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 30(1), 67–76. CrossRef
Zurück zum Zitat Saidi, F., Stasse, O., Yokoi, K., & Kanehiro, F. (2007). Online object search with a humanoid robot. In Proc. Intelligent robots and systems. Saidi, F., Stasse, O., Yokoi, K., & Kanehiro, F. (2007). Online object search with a humanoid robot. In Proc. Intelligent robots and systems.
Zurück zum Zitat Schiele, B., & Crowley, J. (1998). Transinformation for active object recognition. In Proc. int. conf. on computer vision. Schiele, B., & Crowley, J. (1998). Transinformation for active object recognition. In Proc. int. conf. on computer vision.
Zurück zum Zitat Seeger, M. (2002). The proof of McAllester’s Pac-Bayesian theorem. In: Advances in neural information processing systems. Seeger, M. (2002). The proof of McAllester’s Pac-Bayesian theorem. In: Advances in neural information processing systems.
Zurück zum Zitat Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. CrossRef Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. CrossRef
Zurück zum Zitat Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3), 423–445. CrossRef Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3), 423–445. CrossRef
Zurück zum Zitat Tsotsos, J. K. (1992). On the relative complexity of active vs. passive visual search. International Journal of Computer Vision, 7(2), 127–141. CrossRef Tsotsos, J. K. (1992). On the relative complexity of active vs. passive visual search. International Journal of Computer Vision, 7(2), 127–141. CrossRef
Zurück zum Zitat Tsotsos, J. K. (2011). A computational perspective on visual attention. Cambridge: MIT Press. Tsotsos, J. K. (2011). A computational perspective on visual attention. Cambridge: MIT Press.
Zurück zum Zitat Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual attention via selective tuning. Artificial Intelligence, 78, 507–545. CrossRef Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual attention via selective tuning. Artificial Intelligence, 78, 507–545. CrossRef
Zurück zum Zitat Tsotsos, J., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., & Zhou, K. (2005). Attending to visual motion. Computer Vision and Image Understanding, 100(1–2), 3–40. CrossRef Tsotsos, J., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., & Zhou, K. (2005). Attending to visual motion. Computer Vision and Image Understanding, 100(1–2), 3–40. CrossRef
Zurück zum Zitat Valiant, L. (1984a). Deductive learning. Philosophical Transactions of the Royal Society of London, 312, 441–446. MATHMathSciNet Valiant, L. (1984a). Deductive learning. Philosophical Transactions of the Royal Society of London, 312, 441–446. MATHMathSciNet
Zurück zum Zitat Valiant, L. (1984b). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142. MATHCrossRef Valiant, L. (1984b). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142. MATHCrossRef
Zurück zum Zitat Valiant, L. (1985). Learning disjunctions of conjunctions. In Proc. 9th international joint conference on artificial intelligence. Valiant, L. (1985). Learning disjunctions of conjunctions. In Proc. 9th international joint conference on artificial intelligence.
Zurück zum Zitat Verghese, P., & Pelli, D. (1992). The information capacity of visual attention. Vision Research, 32(5), 983–995. CrossRef Verghese, P., & Pelli, D. (1992). The information capacity of visual attention. Vision Research, 32(5), 983–995. CrossRef
Zurück zum Zitat Wixson, L. E., & Ballard, D. H. (1994). Using intermediate objects to improve the efficiency of visual search. International Journal of Computer Vision, 12(2/3), 209–230. CrossRef Wixson, L. E., & Ballard, D. H. (1994). Using intermediate objects to improve the efficiency of visual search. International Journal of Computer Vision, 12(2/3), 209–230. CrossRef
Zurück zum Zitat Ye, Y., & Tsotsos, J. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145–168. CrossRef Ye, Y., & Tsotsos, J. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145–168. CrossRef
Zurück zum Zitat Ye, Y., & Tsotsos, J. (2001). A complexity level analysis of the sensor planning task for object search. Computational Intelligence, 17(4), 605–620. CrossRefMathSciNet Ye, Y., & Tsotsos, J. (2001). A complexity level analysis of the sensor planning task for object search. Computational Intelligence, 17(4), 605–620. CrossRefMathSciNet
Metadaten
Titel
A Computational Learning Theory of Active Object Recognition Under Uncertainty
verfasst von
Alexander Andreopoulos
John K. Tsotsos
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 1/2013
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-012-0551-6

Weitere Artikel der Ausgabe 1/2013

International Journal of Computer Vision 1/2013 Zur Ausgabe