Skip to main content
Log in

Non-line of Sight Error Mitigation in Ultra-wideband Ranging Systems Using Biased Kalman Filtering

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, a non-line of sight (NLOS) error mitigation method based on biased Kalman filtering for ultra-wideband (UWB) ranging is proposed. The NLOS effect on the measures of signal arrival time is considered one of the major error sources in range estimation and time-based wireless location systems. An improved biased Kalman filtering system, incorporated with sliding-window data smoothing and hypothesis test, is used for NLOS identification and error mitigation. Based on the results of hypothesis test, the estimated ranges are either calculated by smoothing the measured range when line of sight (LOS) status is detected, or obtained by conducting error mitigation on the NLOS corrupted measured range when NLOS status is detected. The effectiveness of the proposed scheme in mitigating errors during the LOS-to-NLOS and NLOS-to-LOS transitions is discussed. Improved NLOS identification and mitigation during the NLOS/LOS variations of channel status are attained by an adaptive variance-adjusting scheme in the biased filter. Simulation results show that the UWB channel status and the transition between NLOS and LOS can be identified promptly by the proposed scheme. The estimated time-based location metrics can be used for achieving higher accuracy in location estimation and target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Al-Jazzar, S., & Caffery, J. Jr. (2002). ML and Bayesian TOA location estimators for NLOS environments. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 1178–1181).

    Google Scholar 

  2. Al-Jazzar, S., Caffery, J. Jr., & You, H. R. (2002). A scattering model based approach to NLOS mitigation in TOA location systems. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 861–865).

    Google Scholar 

  3. Borras, J., Hatrack, P., & Mandayam, N. (1998). Decision theoretic framework for NLOS identification. In Proceedings of 48th IEEE Vehicular Technology Conference (VTC 98) (Vol. 2, pp. 1583–1587). doi:10.1109/VETEC.1998.686556.

    Google Scholar 

  4. Chan, Y. T., Tsui, W. Y., So, H. C., & Ching, P.C. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Article  Google Scholar 

  5. Chan, Y. T., Yau, C. H., & Ching, P. C. (2006). Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 55(1), 10–16.

    Article  Google Scholar 

  6. Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In Proceeding of the IEEE wireless communications and networking conference (Vol. 1, pp. 316–320).

    Google Scholar 

  7. Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. In Proceedings of IEEE global telecommunications conference (vol. 1, pp. 680–684).

    Google Scholar 

  8. Fontana, R., & Gunderson, S. (2002). Ultra-wideband precision asset location system. In Proceedings of 2002 IEEE conference on ultra wideband systems and technologies (pp. 147–150). doi:10.1109/UWBST.2002.1006336.

  9. Fritsche, C., Hammes, U., Klein, A., & Zoubir, A. (2009) Robust mobile terminal tracking in NLOS environments using interacting multiple model algorithm. In IEEE international conference on acoustics, speech and signal processing (pp. 3049–3052). doi:10.1109/ICASSP.2009.4960267.

  10. Gezici, S., Kobayashi, H., & Poor, H. (2003). Nonparametric nonline-of-sight identification. In Proceedings of IEEE 58th vehicular technology conference (VTC 2003-Fall) (Vol. 4, pp. 2544–2548). doi:10.1109/VETECF.2003.1285996.

    Article  Google Scholar 

  11. Gezici, S., Tian, Z., Giannakis, G., Kobayashi, H., Molisch, A., Poor, H., et al. (2005). Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70–84. doi:10.1109/MSP.2005.1458289.

    Article  Google Scholar 

  12. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials, 11(1), 13–32. doi:10.1109/SURV.2009.090103.

    Article  Google Scholar 

  13. Gustafsson, F., & Gunnarsson, F. (2005). Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Processing Magazine, 22(4), 41–53. doi:10.1109/MSP.2005.1458284.

    Article  Google Scholar 

  14. Guvenc, I., & Chong, C. C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys & Tutorials, 11(3), 107–124. doi:10.1109/SURV.2009.090308.

    Article  Google Scholar 

  15. Guvenc, I., Chong, C. C., & Watanabe, F. (2007). NLOS identification and mitigation for UWB localization systems. In Proceedings of IEEE wireless communications and networking conference (pp. 1571–1576). doi:10.1109/WCNC.2007.296.

  16. Hammes, U., Wolsztynski, E., & Zoubir, A. (2009). Robust tracking and geolocation for wireless networks in NLOS environments. IEEE Journal of Selected Topics in Signal Processing, 3(5), 889–901. doi:10.1109/JSTSP.2009.2028383.

    Article  Google Scholar 

  17. Hellebrandt, M., & Mathar, R. (1999). Location tracking of mobiles in cellular radio networks. IEEE Transactions on Vehicular Technology, 48(5), 1558–1562. doi:10.1109/25.790530.

    Article  Google Scholar 

  18. Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.

    Article  Google Scholar 

  19. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory (Vol. I). Prentice Hall.

  20. Le, B. L., Ahmed, K., & Tsuji, H. (2003). Mobile location estimator with NLOS mitigation using Kalman filtering. In Proceedings of IEEE wireless communications and networking conference (Vol. 3, pp. 1969–1973). doi:10.1109/WCNC.2003.1200689.

    Google Scholar 

  21. Liao, J. F., & Chen, B. S. (2006). Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm. IEEE Transactions on Wireless Communications, 5(11), 3002–3006. doi:10.1109/TWC.2006.04747.

    Article  Google Scholar 

  22. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080. doi:10.1109/TSMCC.2007.905750.

    Article  Google Scholar 

  23. Mendel, J. M. (1986). Lessons in digital estimation theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

    Google Scholar 

  24. Molisch, A., Foerster, J., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21. doi:10.1109/MWC.2003.1265848.

    Article  Google Scholar 

  25. Mucchi, L., & Marcocci, P. (2009). A new parameter for UWB indoor channel profile identification. IEEE Transactions on Wireless Communications, 8(4), 1597–1602. doi:10.1109/TWC.2009.070318.

    Article  Google Scholar 

  26. Najar, M., & Vidal, J. (2003). Kalman tracking for mobile location in NLOS situations. In Proceedings of 14th IEEE personal, indoor and mobile radio communications conference (Vol. 3, pp. 2203–2207). doi:10.1109/PIMRC.2003.1259107.

    Article  Google Scholar 

  27. Pahlavan, K., Krishnamurthy, P., & Beneat, A. (1998). Wideband radio propagation modeling for indoor geolocation applications. IEEE Communications Magazine 36(4), 60–65. doi:10.1109/35.667414.

    Article  Google Scholar 

  28. Park, H. J., Kim, M. J., So, Y. J., You, Y. H., & Song, H. K. (2003). UWB communication system for home entertainment network. IEEE Transactions on Consumer Electronics, 49(2), 302–311. doi:10.1109/TCE.2003.1209518.

    Article  Google Scholar 

  29. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74. doi:10.1109/MCOM.2003.1215641.

    Article  Google Scholar 

  30. Rohrig, C., & Muller, M. (2009). Indoor location tracking in non-line-of-sight environments using a IEEE 802.15.4a wireless network. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 552–557). doi:10.1109/IROS.2009.5354747.

  31. Saleh, A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

  32. Sayed, A., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24–40. doi:10.1109/MSP.2005.1458275.

    Article  Google Scholar 

  33. Thomas, N., Cruickshank, D., & Laurenson, D. (2000). A robust location estimator architecture with biased Kalman filtering of TOA data for wireless systems. In Proceedings of 2000 IEEE sixth international symposium on spread spectrum techniques and applications (Vol. 1, pp. 296–300). doi:10.1109/ISSSTA.2000.878132.

    Article  Google Scholar 

  34. Venkatesh, S., & Buehrer, R. (2007). NLOS mitigation using linear programming in ultrawideband location-aware networks. IEEE Transactions on Vehicular Technology, 56(5), 3182–3198. doi:10.1109/TVT.2007.900397.

    Article  Google Scholar 

  35. Wann, C. D., & Lin, H. Y. (2009). Hybrid TOA/AOA estimation error test and non-line of sight identification in wireless location. Wireless Communications and Mobile Computing, 9(6), 859–873. doi:10.1002/wcm.799.

    Article  Google Scholar 

  36. Win, M., & Scholtz, R. (1998). Impulse radio: How it works. IEEE Communications Letters, 2(2), 36–38. doi:10.1109/4234.660796.

    Article  Google Scholar 

  37. Wylie, M., & Holtzman, J. (1996). The non-line of sight problem in mobile location estimation. In Proceedings of IEEE international conference on universal personal communications (vol. 2, pp. 827–831).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Der Wann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wann, CD., Hsueh, CS. Non-line of Sight Error Mitigation in Ultra-wideband Ranging Systems Using Biased Kalman Filtering. J Sign Process Syst 64, 389–400 (2011). https://doi.org/10.1007/s11265-010-0493-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0493-6

Keywords

Navigation