Skip to main content
Log in

Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Hyperspectral imaging can be used in assessing the quality of foods by decomposing the image into constituents such as protein, starch, and water. Observed data can be considered a mixture of underlying characteristic spectra (endmembers), and estimating the constituents and their abundances requires efficient algorithms for spectral unmixing. We present a Bayesian spectral unmixing algorithm employing a volume constraint and propose an inference procedure based on Gibbs sampling. We evaluate the method on synthetic and real hyperspectral data of wheat kernels. Results show that our method perform as good or better than existing volume constrained methods. Further, our method gives credible intervals for the endmembers and abundances, which allows us to asses the confidence of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

Notes

  1. In the literature, the constraints that abundances must sum to one is sometimes refered to as an additivity constraint.

  2. In the notation used in this paper, matrices and vectors are denoted by capital and lower case bold letters respectively. Two subscripts denotes a sub matrix or sub vector with the corresponding rows and columns, where a colon denotes all indices, and \(\tilde m\) denotes all indices except m. For example, w :k denotes the kth column of W and \(\mathbf{w}_{m\tilde k}\) denotes the mth row of W with the kth element removed. A single element of the matrix W is denoted by w mk .

  3. For simplicity, we use a slightly different notation in this section.

  4. In practice, of course, we cannot generate a random number from this improper prior, so we can think of generating w from a uniform distribution between zero and u w , where u w is some very large number.

  5. All scatterplots in this paper are presented as subspace projections onto the first and second principal component (PC) based on the data points.

References

  1. Arngren, M., Schmidt, M., & Larsen, J. (2009). Bayesian nonnegative matrix factorization with volume prior for unmixing of hyperspectral images. In Machine learning for signal processing, IEEE workshop on (MLSP). doi:10.1109/MLSP.2009.5306262.

  2. Arngren, M., Schmidt, M. N., & Larsen, J. (2010). Unmixing of hyperspectral images using Bayesian nonnegative matrix factorization with volume prior. Technical note. http://www.imm.dtu.dk/pubdb/p.php?5836.

  3. Arngren, M., Schmidt, M. N., & Larsen, J. (2010). Unmixing of hyperspectral images using bayesian nonnegative matrix factorization with volume prior, Matlab toolbox. http://www.imm.dtu.dk/pubdb/p.php?5834.

  4. Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., & Huntington, J. (2004). ICE: A statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2085–2095.

    Article  Google Scholar 

  5. Bioucas-Dias, J., & Nascimento, J. (2008). Hyperspectral subspace identification. IEEE Transactions on Geoscience and Remote Sensing, 46(8), 2435–2445.

    Article  Google Scholar 

  6. Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of aviris data. In Summaries of JPL airborne earth science workshop.

  7. Chan, T. H., Chi, C. Y., Huang, Y. M., & Ma, W. K. (2009). A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transactions on Signal Processing, 57(11), 4418–4432.

    Article  MathSciNet  Google Scholar 

  8. Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J. Y., & Hero, A. O. (2009). Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Transactions on Signal Processings, 57(11), 4355–4368.

    Article  MathSciNet  Google Scholar 

  9. Dobigeon, N., Moussaoui, S., Tourneret, J. Y. Y., & Carteret, C. (2009). Bayesian separation of spectral sources under non-negativity and full additivity constraints. Signal Processing, 89(12), 2657–2669.

    Article  MATH  Google Scholar 

  10. Dobigeon, N., & Tourneret, J. Y. (2007). Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex. Tech. Rep., IRIT/ENSEEIHT/TeSA.

  11. Eches, O., Dobigeon, N., & Tourneret, J. Y. (2010). Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm. IEEE Journal of Selected Topics in Signal Processing, 4(3), 582–591.

    Article  Google Scholar 

  12. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–401.

    Article  MathSciNet  MATH  Google Scholar 

  13. Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. doi:10.1109/TPAMI.1984.4767596.

    Article  MATH  Google Scholar 

  14. Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities. In Proceedings the 23rd symposium on the interface between computer sciences and statistics (pp. 571–578). doi:10.1.1.26.6892.

  15. Hoyer, P. O. (2002). Non-negative sparse coding. Neural Networks for Signal Processing, 7, 557–565.

    Google Scholar 

  16. Masalmah, Y. M. (2007). Unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization. Ph.D. thesis, Computing And Information Science And Engineering, University Of Puerto Rico, Mayagez Campus.

  17. Mazet, V., Brie, D., & Idier, J. (2005). Simulation of postive normal variables using several proposal distributions. In IEEE workshop on statistical signal processing (pp. 37–42). doi:10.1109/SSP.2005.1628560.

  18. Miao, L., & Qi, H. (2007). Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 765–777.

    Article  Google Scholar 

  19. Moussaoui, S., Brie, D., Mohammad-Djafari, A., & Carteret, C. (2006). Separation of non-negative mixture of non-negative sources using a Bayesian approach and mcmc sampling. IEEE Transactions on Signal Processing, 54(11), 4133–4145.

    Article  Google Scholar 

  20. Nascimento, J. M. P., & Dias, J. M. B. (2005). Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 898–910.

    Article  Google Scholar 

  21. Ochs, M. F., Stoyanova, R. S., Arias-Mendoza, F., & Brown, T. R. (1999). A new method for spectral decomposition using a bilinear bayesian approach. Journal of Magnetic Resonance, 137(1), 161–176.

    Article  Google Scholar 

  22. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetricsm 5(2), 111–126.

    Article  Google Scholar 

  23. Parra, L., Spence, C., Sajda, P., Ziehe, A., & Mller, K. R. (1999). Unmixing hyperspectral data. Neural Information Processing Systems, 12, 942–948.

    Google Scholar 

  24. Pauca, V. P., Piper, J., & Plemmons, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications, 416(1), 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  25. Plaza, A., Martnez, P., Prez, R., & Plaza, J. (2004). A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 650–663.

    Article  Google Scholar 

  26. Sajda, P., Du, S., & Parra, L. (2003). Recovery of constituent spectra using non-negative matrix factorization. Proceedings of the SPIE - The International Society for Optical Engineering, 5207(1), 321–331.

    Google Scholar 

  27. Schachtner, R., Pppel, G., Tom, A. M., & Lang, E. W. (2009). Minimum determinant constraint for non-negative matrix factorization. Lecture Notes in Computer Science, 5441/2009, 106–113.

    Article  Google Scholar 

  28. Schmidt, M. N. (2009). Linearly constrained bayesian matrix factorization for blind source separation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 1624–1632).

  29. Schmidt, M. N., & Laurberg, H. (2008). Nonnegative matrix factorization with Gaussian process priors. Computational Intelligence and Neuroscience p. Article ID 361705.

  30. Schmidt, M. N., Winther, O., & Hansen, L. K. (2009). Bayesian non-negative matrix factorization. In Independent component analysis and signal separation, international conference on lecture notes in computer science (LNCS) (Vol. 5441, pp. 540–547).

  31. Winter, M. E. (1999). N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of SPIE - The International Society for Optical Engineering, 3753, 266–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Arngren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arngren, M., Schmidt, M.N. & Larsen, J. Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior. J Sign Process Syst 65, 479–496 (2011). https://doi.org/10.1007/s11265-010-0533-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0533-2

Keywords

Navigation