Skip to main content
Log in

Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

As satellite signals, e.g. GPS, are severely degraded indoors or not available at all, other methods are needed for indoor positioning. In this paper, we propose methods for combining information from inertial sensors, indoor map, and WLAN signals for pedestrian indoor navigation. We present results of field tests where complementary extended Kalman filter was used to fuse together WLAN signal strengths and signals of an inertial sensor unit including one gyro and three-axis accelerometer. A particle filter was used to combine the inertial data with map information. The results show that both the map information and WLAN signals can be used to improve the pedestrian dead reckoning estimate based on inertial sensors. The results with different combinations of the available sensor information are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Levi, R.W., & Judd, T. (1996). Dead reckoning navigational system using accelerometer to measure foot impacts. United States Patent No. 5,583,776.

  2. Judd, T. (1997). A personal dead reckoning module. In Proc. ION GPS 97, Kansas City, MO, USA, 16–19 September (pp. 47–51).

  3. Ladetto, Q. (2001). On foot navigation: continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In Proc. ION GPS 2000, Salt Lake City, UT, USA, 19–22 September (pp. 1735–1740).

  4. Fang, L., Antsaklis, P.J., Montestruque, L.A., McMickell, M.B., Lemmon, M., Hui Fang, T.S., Koutroulis, I., Haenggi, M., Xie, M., Xie, X. (2005). Design of a wireless assisted pedestrian dead reckoning system—the NavMote experience. IEEE Transactions on Instrumentation and Measurement, 54(6), 2342–2358.

    Article  Google Scholar 

  5. Bahl, P., & Padmanabhan, V.N. (2000). Radar: an in-building rf-based user location and tracking system. In: Proc. IEEE INFOCOM 2000 (Vol. 2, pp. 775–785).

  6. Kotanen, A., Hännikäinen, A., Leppäkoski, H. Hämäläinen, T. (2003). Experiments on local positioning with bluetooth. In Proc. ITCC 2003 (pp. 297–303). IEEE Computer Society.

  7. Youssef, M.A., Agrawala, A., Udaya Shankar, A. (2003). WLAN location determination via clustering and probability distributions. In Proc. IEEE PerCom 2003 (pp. 143–150).

  8. Quddus, M.A., Ochieng, W.Y., Noland, R.B. (2007). Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transportation Research Part C, 15(5), 312–328.

    Article  Google Scholar 

  9. Evennou, F., Marx, F., Novakov, E. (2005) Map-aided indoor mobile positioning system using particle filter. In Proc. IEEE 2005 wireless communications and networking conference (Vol. 4, pp. 79–84).

  10. Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D. (2007). WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors. In Proc. WPNC’2007, Hannover, Germany (pp. 1–7).

  11. Widyawan, Klepal, M., Beauregard, S. (2008). A novel backtracking particle filter for pattern matching indoor localization. In MELT ’08: Proceedings of the first ACM international workshop on mobile entity localization and tracking in GPS-less environments, New York, NY, USA (pp. 79–84).

  12. Woodman, O., & Harle, R. (2009). RF-based initialisation for inertial pedestrian tracking. In Pervasive ’09: Proc. the 7th international conference on pervasive computing, Nara, Japan (pp. 238–255). Springer.

  13. Leppäkoski, H, Collin, J., Takala, J. (2012). Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals. In Proc. ICASSP 2012, Kyoto, Japan, 25–30 March (pp. 1569–1572).

  14. Brown, R.G., & Hwang, P.Y.C. (1997). Introduction to random signals and applied kalman filtering (3rd ed.). Wiley.

  15. Brown, R.G. (1972). Integrated navigation systems and Kalman filtering: a perspective. NAVIGATION, Journal of The Institute of Navigation, 19(4), 355–362.

    Google Scholar 

  16. Qi, H., & Moore, J.B. (2002). Direct Kalman filtering approach for GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems, 38(2), 687–693.

    Article  Google Scholar 

  17. Yang, Y., Farrell, J., Barth, M. (2000). High-accuracy, high-frequency differential carrier phase GPS aided low-cost INS. In Proc. of the IEEE PLANS, San Diego, CA, USA (pp. 148–155).

  18. Gabaglio, V. (2001). Centralised Kalman filter for augmented gps pedestrian navigation. In Proc. ION GPS 2001, Salt Lake City, Utah, USA (pp. 312–318).

  19. Frank, K., Krach, B., Catterall, N., Robertson, P. (2009). Development and evaluation of a combined WLAN & inertial indoor pedestrian positioning system. In Proc. ION GNSS 2009, Savannah, Georgia, USA (pp. 538–546).

  20. Leppäkoski, H., & Takala, J. (2007). Analysis of complementary Kalman filter configurations for navigation systems. In Proc. ENC-GNSS’07, Geneva, Switzerland, 29–31 May (pp. 1365–1376).

  21. Candy, J.V. (2009). Bayesian signal processing: Classical, modern, and particle filtering methods. Wiley.

  22. Elwell, J. (1999). Inertial navigation for the urban warrior. In Proc. SPIE conference on digitalization of the battlespace IV, Orlando, Florida, USA (pp. 196–204).

  23. Groves, P.D. (2008). Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House.

  24. Leppäkoski, H., Tikkinen, S., Takala, J. (2010). Optimizing radio map for WLAN fingerprinting. In Proc. UPINLBS, Kirkkonummi, Finland, 14–15 October (pp. 1–8).

  25. Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J. (2002). A probabilistic approach to wlan user location estimation. International Journal of Wireless Information Networks, 9(3), 155–164.

    Article  Google Scholar 

  26. VTI Technologies (2010). SCC1300-D04 combined gyroscope and 3-axis accelerometer with digital SPI interfaces. Rev. 1.0.3. Doc. Nr. 82 1131 00 A, Data sheet.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Leppäkoski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leppäkoski, H., Collin, J. & Takala, J. Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals. J Sign Process Syst 71, 287–296 (2013). https://doi.org/10.1007/s11265-012-0711-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0711-5

Keywords

Navigation