Skip to main content
Log in

Modelling Change in Ground Vegetation Response to Acid and Nitrogen Pollution, Climate Change and Forest Management at in Sweden 1500–2100 a.d.

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

The ForSAFE model, designed for modelling biogeochemical cycles (water, acidity, base cation, nitrogen and carbon) in terrestrial ecosystems, was modified with a vegetation response module (VEG), incorporating the effects of: nitrogen pollution, acidification, soil moisture, temperature, wind chill exposure, light and shading by trees, grazing by animals, competition between plants, above ground for light and below ground for water and nutrients. The model calculates the response of number ground vegetation plant groups. The integrated model was tested and validated at integrated level II forest monitoring sites across Sweden, four have been shown here, and used to assess the effect of acidification and nitrogen pollution in relation to factors such as climate change, forest management and changing grazing pressure. The response functions have been derived from single-factor experiments and integrated through the model structure for use on whole systems. The tests with the model suggest that the ground vegetation composition is reasonably well predicted, that much research remains before the model is fully tested and operational, and that the model may serve as a tool for assessing impacts of climate change, acid rain and forest management on plant biodiversity in forested areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D., Ollinger, S. V., Federer, C., Reich, P. B., Gould, M. L., Kirklighter, D. W., et al. (1995). Predicting the effects of climate change on water yield and forest production in the Northeastern United States. Climate Research, 5, 207–222.

    Google Scholar 

  • Aherne, J., Sverdrup, H., Farrell, E., & Cummins, T. (1998). Application of the SAFE model to a Norway spruce stand at Ballyhooly, Ireland. Forest Ecology and Management, 101, 331–338.

    Article  Google Scholar 

  • Akselsson C., Ardö J., & Sverdrup, H. (2004). Critical loads of acidity for forest soils and relationship to forest decline in the northern Czech Republic. Environmental Monitoring and Assessment, 98, 363–379.

    Article  Google Scholar 

  • Alveteg, M., Sverdrup, H., & Warfvinge, P. P. (1996). Regional assessment of dynamic aspects of soil acidification in southern Sweden. Water, Air and Soil Pollution, 85, 2509–2514.

    Article  Google Scholar 

  • Alveteg, M., Walse, C., & Sverdrup, H. (1998). Evaluating simplifications used in regional applications of SAFE and MAKEDEP models. Ecological Modelling, 107, 265–277.

    Article  CAS  Google Scholar 

  • Barkman, A., Warfvinge, P., & Sverdrup, H. (1996). Regionalization of critical loads under uncertainty. Water, Air and Soil Pollution, 85, 2515–1520.

    Article  Google Scholar 

  • Barkman, A., Schlyter, P., Lejonklev, M., Alveteg M., Warfvinge, P., Sverdrup, H., et al. (1999). Uncertainties in high resolution critical load assessment for forest soils – possibilities and constraints of combining distributed soil modelling and GIS. Environmental and Geographical Modeling, 3(2), 125–143.

    Google Scholar 

  • Belyazid, S., Sverdrup, H., & Alveteg, M. (2005). The biogeochemical models family of the biogeochemistry group at Lund University. In Proceedings from a UN/ECE conference held in Pushino, Russia September 16–18, 2004. Institute of Soils Science and Phyotobiology, Nauka, September 2004. (Also printed in Belyazid, S.: Dynamic modelling of biogeochemical processes in forest ecosystems. PhD Thesis from Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden. Reports in ecology and environmental engineering, 2006 (1), 46–58).

  • Belyazid, S., Westling, O., & Sverdrup, H. (2006). Modelling changes in soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution (in press).

  • Bergthorsson, P. (1985). Sensitivity of Icelandic agriculture to climatic variations. Climatic Change, 7, 111–127.

    Article  Google Scholar 

  • Bobbink, R., Ashmore, M., Braun, S., Flueckiger, W., & van den Wyngaert, I. I. J. (2002). Empirical critical loads for natural and semi-natural ecosystems: 2002 update. In R. Bobbink (Ed.), Empirical critical loads for nitrogen (pp.43–170). Bern, Schweiz: Swiss Agency for Environment, Forests and Landscape.

    Google Scholar 

  • EEA (1996). The Dobris assessment. Copenhagen: European Environmental Agency (EEA). http://www.biodiversity.be/bbpf/econf/econfdath.html.

    Google Scholar 

  • Ellenberg, H. (1992). Zeigerwerte von Pflanzen in mitteleuropa. Scripta Geobotanica, 18.

  • European Commission (1995). Brussels: Europeans and the environment.

  • Falkengren-Grerup, U. (1992). Mark och floraförändringar i sydsvensk adellövskog. NaturvŇårdsverket Rapport 4061.

  • Fridriksson, S., & Sigurdsson, F. H. (1983). Åhrif lofthita å grassprettu. J. Agr. Res. Icelandica, 15, 41–54.

    Google Scholar 

  • Green, D. G., & Klomp, N. I. (1996). Ecosystem connectivity and its implications for managing biodiversity. In R. Crozier & S. Lawler (Eds.), Setting conservation priorities. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Grennfelt, P., & Hov, Ø. (2005). Regional air pollution at a turning point. Ambio, 34, 2–10.

    Article  Google Scholar 

  • Grennfelt, P., Moldan, F., Alveteg, M., Warfvinge, P., & Sverdrup, H. (2001). Critical loads – is there a need for a new concept. Journal of Water, Air and Soil Pollution Focus 1, 21–27.

    Article  CAS  Google Scholar 

  • Guyot, G. (1998). Physics of the environment and climate. Paris: Wiley.

    Google Scholar 

  • Hanks, J., & Ritchie, J. (1991). Modelling plant and soil systems. In Agronomy 3. New York: Soil Science Society of America.

    Google Scholar 

  • Hansson, J. (1995). Experimenting with modeling of biodiversity as a function of soil acidity and nitrogen. Report in Ecology and Environmental Engineering 3. Lund, Sweden: Chemical Engineering II, University of Lund.

    Google Scholar 

  • Kimmins, H. (1996). Forest Ecology. A foundation for sustainable management (2nd ed., 6 pp. Edition ISBN 0-02-364071-5). New Jersey: Prentice Hall.

    Google Scholar 

  • Lambers, H., Stuart Chapin, E., & Pons, T. (1998). Plant physiological ecology. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Larcher, W. (1975–1995). Physiologycal plant ecology. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Latour, J. B., Reiling, R., & Slooff, W. (1994). Ecological limit values for eutrophication and desiccation: perspectives for a risk assessment. Water Air and Soil Pollution, 78, 265–277.

    Article  CAS  Google Scholar 

  • Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. 251 pp. UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), Geneva. Mapping Manual 2004, www.icpmapping.org.

  • Marschner, H. (1991). Mechanisms of adaption of plants to acid soils. Plant and Soil, 134, 1–20.

    CAS  Google Scholar 

  • Marschner, H. (1997). Mineral nutrients of higher plants. London: Academic.

    Google Scholar 

  • Martinson, L., Alveteg, M., Kronnas, V., Sverdrup, H., Westling O., & Warfvinge, P. (2005). A regional perspective on present and future soil chemistry at 16 Swedish forest sites. Water, Air and Soil Pollution, 4, 1–20.

    Article  Google Scholar 

  • Mossberg, B., & Stenberg, L. (1997). Den Nordiska Floran. Stockholm: Wahlström & Widstrand Forlag. ISBN 9146175849.

    Google Scholar 

  • Nilsson, S. G., Niklasson, M., Hedin, J., Eliasson, P., Ljungberg, H. (2005). Biodiversity and sustainable forestry in changing landscape – principles and Southern Sweden as an example. Journal of Sustainable Forestry, 21, 11–43.

    Article  Google Scholar 

  • Nordin, A., Strengbom, J., Witzell, J., Näsholm, T., Ericson, L. (2004). Nitrogen deposition and the biodiversity of boreal forests: Implications for the nitrogen critical load. Ambio, 34, 20–24.

    Article  Google Scholar 

  • Stjernquist, I., Rosengren, U., Sonesson, K., Sverdrup, H., Thelin, G., & Nihlgård, B. (2002a). Forest health indicators. In H. Sverdrup & I. Stjernquist (Eds.), Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing forest ecosystems (vol. 5, pp. 204–213). Amsterdam: Kluwer.

    Google Scholar 

  • Stjernquist, I., Sverdrup, H., & Welander, T. (2002b). Acid deposition and soil acidity. In H. Sverdrup & I. Stjernquist (Eds.), Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing forest ecosystems (vol. 5, pp. 222–236). Amsterdam: Kluwer.

    Google Scholar 

  • Strengbom, J., Nordin, A., Näsholm, T., & Ericson, L. (2002). Parasitic fungus mediates vegetational changes in nitrogen-exposed boreal forests. Journal of Ecology, 90, 61–67.

    Google Scholar 

  • Svensson, M. G. E., Stjernquist, I., Schlyter, P., & Sverdrup, H. (2002). Biodiversity in sustainable forestry. In H. Sverdrup & I. Stjernquist (Eds.), Developing principles for sustainable forestry Results from a research program in southern Sweden. Managing forest ecosystems (vol. 5, pp. 273–283). Amsterdam: Kluwer.

    Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1993a). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca+Mg+K)/Al ratio. In Reports in Ecology and Environmental Engineering 2:1993. Lund Sweden: Chemical Engineering II, University of Lund, Lund, Sweden.

    Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1993b). Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8, 273–283.

    Article  CAS  Google Scholar 

  • Sverdrup, H., Warfvinge, P., Blake, L., & Goulding, K. (1995). Modelling recent and historic soil data from the Rothamsted experimental station, UK, using SAFE. Agriculture, Ecosystems and Environment, 53, 161–177.

    Article  Google Scholar 

  • Sverdrup, H., Hagen-Thorn, A., Holmqvist, J., Warfvinge, P., Walse, C., & Alveteg, C. (2002). Biogeochemical processes and mechanisms. In H., Sverdrup, & I. Stjernquist, (Eds.), Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing forest ecosystems (vol. 5, pp. 91–196). Amsterdam: Kluwer.

    Google Scholar 

  • Sverdrup, H., Martinsson, L., Alveteg, M., Moldan, F., Kronnäs, V., & Munthe, J. (2005). Modeling recovery of Swedish ecosystems from acidification. Ambio, 34, 25–31.

    Article  Google Scholar 

  • Sverdrup, H., Belyazid, S., Haraldsson, H., Nihlgård, B. (2005). Modelling change in ground vegetation from effects of nutrients, pollution, climate, grazing and land use. In Edda & Gudmundur Halldorsson (Eds.), Effects of afforestation on ecosystems, landscape and rural development. Proceedings from a conference held at Reykholt June 20–23, 2005. Andre nordiske publikasjoner, Chapter 2:14–21. Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Sverdrup, H., Warfvinge, P., Moldan, F., & Hultberg, H. (1996). Modelling acidification and recovery in the roofed catchment at lake Gårdsjön, using the SAFE model. Water, Air and Soil Pollution, 85, 1753–1758.

    Article  Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 72, 2–16.

    Article  Google Scholar 

  • Ulrich, B. (1985). Interaction of indirect and direct effects of air pollutants in forests. In C. Tryanowsky (Ed.), Air pollution and plants (pp. 149–181). Weinheim: Gesellschaft Deutsche Chemiker VCH Verlagsgesellschaft.

    Google Scholar 

  • Wallman, P., Sverdrup, H., Svensson, M., & Alveteg, M. (2002). Integrated modelling. In H. Sverdrup & I. Stjernquist (Eds.), Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing Forest Ecosystems (vol. 5, pp. 57–83). Amsterdam: Kluwer.

    Google Scholar 

  • Walse, C. (1998). Modelling acidification and nutrient supply in forest soil. Report in Ecology and Environmental Engineering 2. PhD thesis. Sweden: Chemical Engineering II, University of Lund.

  • Warfvinge, P., Sverdrup, H., Ågren, G., & Rosen, K. (1992). Effekter av luftföroreningar på framtida skogstilväxt. In Skogspolitiken inför 2000 talet – 1990 års skogspolitiska kommite, Statens Offentliga Utredningar: SOU (vol. 76, pp. 377–412).

  • Warfvinge P., Falkengren-Grerup, U., Sverdrup, H., & Andersen, B. (1993). Modelling long-term cation supply in acidified forest stands. Environmental, 80, 209–221.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Sverdrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverdrup, H., Belyazid, S., Nihlgård, B. et al. Modelling Change in Ground Vegetation Response to Acid and Nitrogen Pollution, Climate Change and Forest Management at in Sweden 1500–2100 a.d. . Water Air Soil Pollut: Focus 7, 163–179 (2007). https://doi.org/10.1007/s11267-006-9067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-006-9067-9

Keywords

Navigation