Skip to main content
Erschienen in: Water Resources Management 3/2013

01.02.2013

Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams

verfasst von: H. Md. Azamathulla, Robert D. Jarrett

Erschienen in: Water Resources Management | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manning’s roughness coefficient (n) has been widely used in the estimation of flood discharges or depths of flow in natural channels. Therefore, the selection of appropriate Manning’s n values is of paramount importance for hydraulic engineers and hydrologists and requires considerable experience, although extensive guidelines are available. Generally, the largest source of error in post-flood estimates (termed indirect measurements) is due to estimates of Manning’s n values, particularly when there has been minimal field verification of flow resistance. This emphasizes the need to improve methods for estimating n values. The objective of this study was to develop a soft computing model in the estimation of the Manning’s n values using 75 discharge measurements on 21 high gradient streams in Colorado, USA. The data are from high gradient (S > 0.002 m/m), cobble- and boulder-bed streams for within bank flows. This study presents Gene-Expression Programming (GEP), an extension of Genetic Programming (GP), as an improved approach to estimate Manning’s roughness coefficient for high gradient streams. This study uses field data and assessed the potential of gene-expression programming (GEP) to estimate Manning’s n values. GEP is a search technique that automatically simplifies genetic programs during an evolutionary processes (or evolves) to obtain the most robust computer program (e.g., simplify mathematical expressions, decision trees, polynomial constructs, and logical expressions). Field measurements collected by Jarrett (J Hydraulic Eng ASCE 110: 1519–1539, 1984) were used to train the GEP network and evolve programs. The developed network and evolved programs were validated by using observations that were not involved in training. GEP and ANN-RBF (artificial neural network-radial basis function) models were found to be substantially more effective (e.g., R2 for testing/validation of GEP and RBF-ANN is 0.745 and 0.65, respectively) than Jarrett’s (J Hydraulic Eng ASCE 110: 1519–1539, 1984) equation (R2 for testing/validation equals 0.58) in predicting the Manning’s n.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ab Ghani A, Zakaria NA, Chang CK, Ariffin J, Abu Hasan Z, Abdul Ghaffar AB (2007) Revised equations for Manning’s coefficient for sand-bed rivers. Int J River Basin Manag 5(4):329–346 Ab Ghani A, Zakaria NA, Chang CK, Ariffin J, Abu Hasan Z, Abdul Ghaffar AB (2007) Revised equations for Manning’s coefficient for sand-bed rivers. Int J River Basin Manag 5(4):329–346
Zurück zum Zitat American Society of Civil Engineers (ASCE) Task Committee (2000) The ASCE Task Committee on Application of artificial neural networks in hydrology. J Hydrologic Eng 5(2):115–137CrossRef American Society of Civil Engineers (ASCE) Task Committee (2000) The ASCE Task Committee on Application of artificial neural networks in hydrology. J Hydrologic Eng 5(2):115–137CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA (2011) Genetic programming for longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef Azamathulla HM, Ghani AA (2011) Genetic programming for longitudinal dispersion coefficients in streams. Water Resour Manag 25(6):1537–1544CrossRef
Zurück zum Zitat Azamathulla HM, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698CrossRef Azamathulla HM, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA, Zakaria NA, Aytac G (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng ASCE 136(3):165–169CrossRef Azamathulla HM, Ghani AA, Zakaria NA, Aytac G (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng ASCE 136(3):165–169CrossRef
Zurück zum Zitat Azamathulla HM, Ghani AA, Leow CS, Chang CK, Zakaria NA (2011) Gene-expression programming for the development of a stage-discharge curve of the Pahang River. Water Resour Manag 25(11):2901–2916CrossRef Azamathulla HM, Ghani AA, Leow CS, Chang CK, Zakaria NA (2011) Gene-expression programming for the development of a stage-discharge curve of the Pahang River. Water Resour Manag 25(11):2901–2916CrossRef
Zurück zum Zitat Azmathulla HM, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of ski-jump bucket. J HydraulEng 131(10):898–908CrossRef Azmathulla HM, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of ski-jump bucket. J HydraulEng 131(10):898–908CrossRef
Zurück zum Zitat Barnes Jr., HH (1967) Roughness characteristics of natural channels. U.S. Geological Survey Water-Supply Paper 1849, p. 213 Barnes Jr., HH (1967) Roughness characteristics of natural channels. U.S. Geological Survey Water-Supply Paper 1849, p. 213
Zurück zum Zitat Bathurst JC (1985) Flow resistance estimation in mountain rivers: ASCE. J Hydraul Eng 111:625–641CrossRef Bathurst JC (1985) Flow resistance estimation in mountain rivers: ASCE. J Hydraul Eng 111:625–641CrossRef
Zurück zum Zitat Bray DI (1979) Estimating average velocity in gravel-bed rivers. J Hydraul Div 105:1103–1122 Bray DI (1979) Estimating average velocity in gravel-bed rivers. J Hydraul Div 105:1103–1122
Zurück zum Zitat Brownlie WR (1983) Flow depth in sand-bed channels. J Hydraul Eng 109(7):959–990CrossRef Brownlie WR (1983) Flow depth in sand-bed channels. J Hydraul Eng 109(7):959–990CrossRef
Zurück zum Zitat Bruschin J (1985) Discussion on Brownlie (1983): flow depth in sand-bed channels. J Hydraul Eng ASCE 111:736–739CrossRef Bruschin J (1985) Discussion on Brownlie (1983): flow depth in sand-bed channels. J Hydraul Eng ASCE 111:736–739CrossRef
Zurück zum Zitat Chow VT (1959) Open Channel Hydraulics. McGraw-Hill, New York Chow VT (1959) Open Channel Hydraulics. McGraw-Hill, New York
Zurück zum Zitat Dingman SL, Sharma KP (1997) Statistical development and validation of discharge equations for natural channels. J Hydrol 199:13–35CrossRef Dingman SL, Sharma KP (1997) Statistical development and validation of discharge equations for natural channels. J Hydrol 199:13–35CrossRef
Zurück zum Zitat Ferreira C (2001a) Gene expression programming in problem solving”, 6th Online World Conference on Soft Computing in Industrial Applications (invited tutorial) Ferreira C (2001a) Gene expression programming in problem solving”, 6th Online World Conference on Soft Computing in Industrial Applications (invited tutorial)
Zurück zum Zitat Ferreira C (2001b) Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2):87–129 Ferreira C (2001b) Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2):87–129
Zurück zum Zitat Ferreira C (2006) Gene-expression programming; mathematical modeling by an artificial intelligence. Springer, Berling, Heidelberg, New York Ferreira C (2006) Gene-expression programming; mathematical modeling by an artificial intelligence. Springer, Berling, Heidelberg, New York
Zurück zum Zitat Giustolisi O (2004) Using genetic programming to determine Chèzy resistance coefficient in corrugated channels. J Hydroinformatics 6(3):157–173 Giustolisi O (2004) Using genetic programming to determine Chèzy resistance coefficient in corrugated channels. J Hydroinformatics 6(3):157–173
Zurück zum Zitat Golubtsov VV (1969) Hydraulic resistance and formula for computing average flow velocity of mountain rivers. Soviet Hydrol 5:500–510 Golubtsov VV (1969) Hydraulic resistance and formula for computing average flow velocity of mountain rivers. Soviet Hydrol 5:500–510
Zurück zum Zitat Green JC (2006) Effect of macrophyte spatial variability on channel resistance. Adv Water Resour 29:426–438CrossRef Green JC (2006) Effect of macrophyte spatial variability on channel resistance. Adv Water Resour 29:426–438CrossRef
Zurück zum Zitat Guven A (2009) Linear genetic programming for time-series modeling of daily flow rate. Earth Syst Sci 118(2):137CrossRef Guven A (2009) Linear genetic programming for time-series modeling of daily flow rate. Earth Syst Sci 118(2):137CrossRef
Zurück zum Zitat Guven A, Aytek A (2009) A new approach for stage-discharge relationship: gene-expression programming. J Hydrol Eng ASCE 14(8):812–820CrossRef Guven A, Aytek A (2009) A new approach for stage-discharge relationship: gene-expression programming. J Hydrol Eng ASCE 14(8):812–820CrossRef
Zurück zum Zitat Guven A, Talu NE (2010) Gene-expression programming for estimating suspended sediment in Middle Euphrates Basin, Turkey. CLEAN: Soil, Air, Water 38:1159. doi:12 CrossRef Guven A, Talu NE (2010) Gene-expression programming for estimating suspended sediment in Middle Euphrates Basin, Turkey. CLEAN: Soil, Air, Water 38:1159. doi:12 CrossRef
Zurück zum Zitat Hicks DM, Mason PD (1991) Roughness characteristics of New Zealand rivers. Water Resources Survey, Wellington, p 329 Hicks DM, Mason PD (1991) Roughness characteristics of New Zealand rivers. Water Resources Survey, Wellington, p 329
Zurück zum Zitat Jarrett RD (1984) Hydraulics of high gradient streams. J Hydraul Eng ASCE 110(1):1519–1539 Jarrett RD (1984) Hydraulics of high gradient streams. J Hydraul Eng ASCE 110(1):1519–1539
Zurück zum Zitat Jarrett RD (1987) Peak discharge errors in slope-area computation in mountain streams. J Hydrol 96(1–4):53–67CrossRef Jarrett RD (1987) Peak discharge errors in slope-area computation in mountain streams. J Hydrol 96(1–4):53–67CrossRef
Zurück zum Zitat Jarrett RD (1992) Hydraulics of mountain rivers. In: Yen BC (ed) Channel flow resistance—centennial of Manning’s’ formula: international conference for the centennial of Manning’s and Kuichling’s rational formula. Water Resources Publications, Littleton, pp 287–298 Jarrett RD (1992) Hydraulics of mountain rivers. In: Yen BC (ed) Channel flow resistance—centennial of Manning’s’ formula: international conference for the centennial of Manning’s and Kuichling’s rational formula. Water Resources Publications, Littleton, pp 287–298
Zurück zum Zitat Jarrett RD (1994) Historic-flood evaluation and research needs in mountainous areas. In: Cotroneo GV, Rumer RR (eds) Hydraulic Engineering--Proceedings of the symposium sponsored by the American Society of Civil Engineers, Buffalo, New York, August 1–5, 1994. American Society of Civil Engineers, New York, pp 875–879 Jarrett RD (1994) Historic-flood evaluation and research needs in mountainous areas. In: Cotroneo GV, Rumer RR (eds) Hydraulic Engineering--Proceedings of the symposium sponsored by the American Society of Civil Engineers, Buffalo, New York, August 1–5, 1994. American Society of Civil Engineers, New York, pp 875–879
Zurück zum Zitat Jarrett RD, Petsch HE Jr (1985) Computer Program NCALC user’s manual, Verification of Manning’s roughness coefficient in channels: U.S. Geological Survey Water-Resources Investigations Report 85–4317, p. 27 Jarrett RD, Petsch HE Jr (1985) Computer Program NCALC user’s manual, Verification of Manning’s roughness coefficient in channels: U.S. Geological Survey Water-Resources Investigations Report 85–4317, p. 27
Zurück zum Zitat Jiang M, Li L-X (2010) An improved two-point velocity method for estimating the roughness coefficient of natural channels. Physics and Chemistry of the Earth. (in press) Jiang M, Li L-X (2010) An improved two-point velocity method for estimating the roughness coefficient of natural channels. Physics and Chemistry of the Earth. (in press)
Zurück zum Zitat Keulegan GH (1938) Laws of turbulent flow in open channels. J Res Natl BurStand 21:707–741CrossRef Keulegan GH (1938) Laws of turbulent flow in open channels. J Res Natl BurStand 21:707–741CrossRef
Zurück zum Zitat Koza JR (1992) Genetic Programming: On the Programming of Computers by means of Natural Selection. The MIT Press, Cambridge Koza JR (1992) Genetic Programming: On the Programming of Computers by means of Natural Selection. The MIT Press, Cambridge
Zurück zum Zitat Li Z, Zhang J (2001) Calculation of field Manning’s roughness coefficient. Agric Water Manage 49:153–161CrossRef Li Z, Zhang J (2001) Calculation of field Manning’s roughness coefficient. Agric Water Manage 49:153–161CrossRef
Zurück zum Zitat Limerinos JT (1970) Determination of the Manning Coefficient from measured bed roughness in natural channels: U.S. Geological Survey Professional Paper 1898-B, p. 47 Limerinos JT (1970) Determination of the Manning Coefficient from measured bed roughness in natural channels: U.S. Geological Survey Professional Paper 1898-B, p. 47
Zurück zum Zitat Marcus WA, Roberts K, Harvey L, Tackman G (1992) An evaluation of methods for estimating Manning’s n in small mountain streams. Mt Res Dev 12:227–239CrossRef Marcus WA, Roberts K, Harvey L, Tackman G (1992) An evaluation of methods for estimating Manning’s n in small mountain streams. Mt Res Dev 12:227–239CrossRef
Zurück zum Zitat Maresova I (1994) Evaluating flow resistance using height of roughness protrusions. In: Cotroneo GV, Rumer RR (eds) Hydraulic Engineering--Proceedings of the Symposium sponsored by the American Society of Civil Engineers, Buffalo, New York, August 1–5, 1994. American Society of Civil Engineers, New York, pp 712–716 Maresova I (1994) Evaluating flow resistance using height of roughness protrusions. In: Cotroneo GV, Rumer RR (eds) Hydraulic Engineering--Proceedings of the Symposium sponsored by the American Society of Civil Engineers, Buffalo, New York, August 1–5, 1994. American Society of Civil Engineers, New York, pp 712–716
Zurück zum Zitat Millar RG, Quick M (1994) Flow resistance of high-gradient gravel channels. In: Cotroneo GV, Rumer RR (eds) 1994 ASCE National Conference on Hydraulic Engineering. American Society of Civil Engineers, Hydraulics Division, New York, pp 717–721 Millar RG, Quick M (1994) Flow resistance of high-gradient gravel channels. In: Cotroneo GV, Rumer RR (eds) 1994 ASCE National Conference on Hydraulic Engineering. American Society of Civil Engineers, Hydraulics Division, New York, pp 717–721
Zurück zum Zitat Reid DE, Hickin EJ (2008) Flow resistance in steep mountain streams. Earth Surf Process Landf 33:2211–2240CrossRef Reid DE, Hickin EJ (2008) Flow resistance in steep mountain streams. Earth Surf Process Landf 33:2211–2240CrossRef
Zurück zum Zitat Riggs HC (1976) A simplified slope area method for estimating flood discharges in natural channels. J Res U S Geol Surv 4:285–291 Riggs HC (1976) A simplified slope area method for estimating flood discharges in natural channels. J Res U S Geol Surv 4:285–291
Zurück zum Zitat Teodorescu L, Sherwood D (2008) High Energy Physics event selection with Gene Expression Programming. Comput Phys Commun 178(6):409–419CrossRef Teodorescu L, Sherwood D (2008) High Energy Physics event selection with Gene Expression Programming. Comput Phys Commun 178(6):409–419CrossRef
Zurück zum Zitat Thompson SM, Campbell PL (1979) Hydraulics of a large channel paved with boulders. J Hydraul Eng ASCE 17:341–354CrossRef Thompson SM, Campbell PL (1979) Hydraulics of a large channel paved with boulders. J Hydraul Eng ASCE 17:341–354CrossRef
Zurück zum Zitat Traore S, Guven A (2012) Regional-specific Numerical Models of Evapotranspiration Using Gene-expression Programming Interface in Sahel. Wat Resou Manag 26(15):4367–4380CrossRef Traore S, Guven A (2012) Regional-specific Numerical Models of Evapotranspiration Using Gene-expression Programming Interface in Sahel. Wat Resou Manag 26(15):4367–4380CrossRef
Zurück zum Zitat Wohl EE (1998) Uncertainty in flood estimates associated with roughness coefficient. J Hydraul Eng ASCE 124:219–223CrossRef Wohl EE (1998) Uncertainty in flood estimates associated with roughness coefficient. J Hydraul Eng ASCE 124:219–223CrossRef
Zurück zum Zitat Wohl EE (2000) Channel processes. in Mountain Rivers. Water Resources Monograph 14, American Geophysical Union Press, Washington, D.C, pp 63–147CrossRef Wohl EE (2000) Channel processes. in Mountain Rivers. Water Resources Monograph 14, American Geophysical Union Press, Washington, D.C, pp 63–147CrossRef
Metadaten
Titel
Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams
verfasst von
H. Md. Azamathulla
Robert D. Jarrett
Publikationsdatum
01.02.2013
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 3/2013
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-012-0211-1

Weitere Artikel der Ausgabe 3/2013

Water Resources Management 3/2013 Zur Ausgabe