Skip to main content
Erschienen in: Water Resources Management 12/2015

01.09.2015

Reverse Flood Routing in Natural Channels using Genetic Algorithm

verfasst von: G. Zucco, G. Tayfur, T. Moramarco

Erschienen in: Water Resources Management | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Establishing a clear overview of data discharge availability for water balance modelling in basins is a priority in Europe, and in the particular in the framework of the system of Economic and Environmental Accounts for Water (SEEAW) developed by the EU Directorate-General for the Environment. However, accurate discharge estimation at a river site depends on rating curve reliability usually defined by recording the water level at a gauged section and carrying out streamflow measurements. Local stage monitoring is fairly straightforward and relatively inexpensive compared to the cost to carry out flow velocity measurements which are, in addition, hindered by high flow. Moreover, hydraulic models may not be ideally suitable to serve the purpose of rating curve extension or its development at a river site upstream/downstream where the discharge is known due to their prohibitive requirement of channel cross-section details and roughness information at closer intervals. Likewise, rainfall-runoff transformation might be applied but its accuracy is tightly linked to detailed information in terms of geomorphological characteristics of intermediate basins as well as rainfall pattern data. On this basis, a procedure for reverse flood routing in natural channels is here proposed for three different configurations of hydrometric monitoring of a river reach where lateral flow is significant and no rainfall data are available for the intermediate basin. The first considers only the downstream channel end as a gauged site where discharge and stages are recorded. The second configuration assumes the downstream end as a gauged site but only in terms of stage. The third configuration envisages both channel ends equipped to recording stages. The channel geometry is known only at channel ends. The developed model has basically four components: (1) the inflow hydrograph is expressed by a Pearson Type-III distribution, involving parameters of peak discharge, time to peak, and a shape factor; (2) the basic continuity equation for flow routing written in the characteristic form is employed; (3) the lateral flow is related to stages at channel ends. (4) the relation between local stage and remote discharge as found by Moramarco et al. (2005b) is exploited. The parameters, coefficients and exponents of the model are obtained, for each configuration, using the genetic algorithm method. Three equipped river branches along the Tiber River in central Italy are used to validate the procedure. Analyses are carried out for three significant flood events occurred along the river and where the lateral flow was significant. Results show the good performance of the procedure for all three monitoring configurations. Specifically, the discharge hydrographs assessed at channel ends are found satisfactory both in terms of shape with a Nash-Sutcliffe ranging overall in the interval (0.755–0.972) and in the reproduction of rating curves at channel ends. Finally, by a synthetic test the performance of the developed procedure is compared to that of the hydraulic model coupled with a hydrologic model. Two river reaches are considered, the first along the Tiber River and the second one located in the Rio Grande basin which is a tributary of the Tiber River. Detailed channel geometry data are available for both the river sections. Results showed the effectiveness of the reverse flood routing to reproducing fairly well the hydrographs simulated by the hydraulic model in the three monitoring investigated configurations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Artichowicz W, Szymkiewicz R (2009) “Inverse integration of open channel flow equation”. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia Artichowicz W, Szymkiewicz R (2009) “Inverse integration of open channel flow equation”. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia
Zurück zum Zitat Aytek A, Kisi O (2008) A genetic programming approach to suspended sediment modelling”. J Hydrol 351(3–4):288–298CrossRef Aytek A, Kisi O (2008) A genetic programming approach to suspended sediment modelling”. J Hydrol 351(3–4):288–298CrossRef
Zurück zum Zitat Barbetta S, Franchini M, Melone F, Moramarco T (2012) Enhancement and comprehensive evaluation of the Rating Curve Model for different river sites”. J Hydrol 464–465:376–387CrossRef Barbetta S, Franchini M, Melone F, Moramarco T (2012) Enhancement and comprehensive evaluation of the Rating Curve Model for different river sites”. J Hydrol 464–465:376–387CrossRef
Zurück zum Zitat Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting”. Hydrol Process 25(18):2801–2813. doi:10.1002/hyp.8042 CrossRef Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting”. Hydrol Process 25(18):2801–2813. doi:10.​1002/​hyp.​8042 CrossRef
Zurück zum Zitat Bruen M, Dooge JCI (2007) Harmonic analysis of the stability of reverse routing in channels”. Hydrol Earth Syst Sci 11(1):559–568CrossRef Bruen M, Dooge JCI (2007) Harmonic analysis of the stability of reverse routing in channels”. Hydrol Earth Syst Sci 11(1):559–568CrossRef
Zurück zum Zitat Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration”. J Hydrol 268(1–4):72–86CrossRef Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration”. J Hydrol 268(1–4):72–86CrossRef
Zurück zum Zitat Cheng CT, Wu XY, Chau KW (2005) Multiple criteria rainfall-runoff model calibration using a parallel genetic algorithm in a cluster of computer”. Hydrol Sci J 50(6):1069–1088 Cheng CT, Wu XY, Chau KW (2005) Multiple criteria rainfall-runoff model calibration using a parallel genetic algorithm in a cluster of computer”. Hydrol Sci J 50(6):1069–1088
Zurück zum Zitat Cheng CT, Zhao MY, Chau KW, Wu XY (2006) Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J Hydrol 316(1–4):129–140CrossRef Cheng CT, Zhao MY, Chau KW, Wu XY (2006) Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J Hydrol 316(1–4):129–140CrossRef
Zurück zum Zitat D’Oria M, Tanda MG (2012) Reverse flow routing in open channels: A Bayesian geostatistical approach”. J Hydrol 460–461:130–135CrossRef D’Oria M, Tanda MG (2012) Reverse flow routing in open channels: A Bayesian geostatistical approach”. J Hydrol 460–461:130–135CrossRef
Zurück zum Zitat Danish Hydraulic Institute (DHI) (2003) “User’s manual and technical references for MIKE 11” (version 2003). Hørsholm, Denmark Danish Hydraulic Institute (DHI) (2003) “User’s manual and technical references for MIKE 11” (version 2003). Hørsholm, Denmark
Zurück zum Zitat Das A (2009) Reverse stream flow routing by using Muskingum models”. Sadhana 34(3):483–499CrossRef Das A (2009) Reverse stream flow routing by using Muskingum models”. Sadhana 34(3):483–499CrossRef
Zurück zum Zitat Dooge JCI, Bruen M (2005) Problems in reverse routing”. Acta Geol Pol 53(4):357–371 Dooge JCI, Bruen M (2005) Problems in reverse routing”. Acta Geol Pol 53(4):357–371
Zurück zum Zitat Eli RN, Wiggert JM, Contractor DN (1974) Reverse flow routing by the implicit method”. Water Resour Res 10(3):597–600CrossRef Eli RN, Wiggert JM, Contractor DN (1974) Reverse flow routing by the implicit method”. Water Resour Res 10(3):597–600CrossRef
Zurück zum Zitat Goldberg DE (1989) Genetic algorithms for search, optimization, and machine learning”. Addison-Wesley, USA Goldberg DE (1989) Genetic algorithms for search, optimization, and machine learning”. Addison-Wesley, USA
Zurück zum Zitat Goldberg DE (1999) Genetic Algorithms”. Addison-Wesley, USA Goldberg DE (1999) Genetic Algorithms”. Addison-Wesley, USA
Zurück zum Zitat Guan J, Aral MM (2005) Remediation System Design with Multiple Uncertain Parameters using Fuzzy Sets and Genetic Algorithm”. J Hydrol Eng 10(5):386–394CrossRef Guan J, Aral MM (2005) Remediation System Design with Multiple Uncertain Parameters using Fuzzy Sets and Genetic Algorithm”. J Hydrol Eng 10(5):386–394CrossRef
Zurück zum Zitat Hejazi MI, Cai XM, Borah DK (2008) Calibrating a watershed simulation model involving human interference: an application of multi-objective genetic algorithms”. J Hydroinf 10(1):97–111CrossRef Hejazi MI, Cai XM, Borah DK (2008) Calibrating a watershed simulation model involving human interference: an application of multi-objective genetic algorithms”. J Hydroinf 10(1):97–111CrossRef
Zurück zum Zitat Jain A, Bhattacharjya RK, Sanaga S (2004) Optimal design of composite channels using genetic algorithm”. J Irrig Drain Eng 130(4):286–295CrossRef Jain A, Bhattacharjya RK, Sanaga S (2004) Optimal design of composite channels using genetic algorithm”. J Irrig Drain Eng 130(4):286–295CrossRef
Zurück zum Zitat Liong SY, Chan WT, ShreeRam J (1995) Peak flow forecasting with genetic algorithm and SWMM”. J Hydraul Eng ASCE 121(8):613–617CrossRef Liong SY, Chan WT, ShreeRam J (1995) Peak flow forecasting with genetic algorithm and SWMM”. J Hydraul Eng ASCE 121(8):613–617CrossRef
Zurück zum Zitat Moramarco T, Saltalippi C, Singh VP (2004) Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equation”. J Hydrol Eng 9(1):42–50CrossRef Moramarco T, Saltalippi C, Singh VP (2004) Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equation”. J Hydrol Eng 9(1):42–50CrossRef
Zurück zum Zitat Moramarco T, Melone F, Singh VP (2005a) Assessment of flooding in urbanized ungauged basins: a case study in the Upper Tiber area, Italy”. Hydrol Process 19(10):1909–1924CrossRef Moramarco T, Melone F, Singh VP (2005a) Assessment of flooding in urbanized ungauged basins: a case study in the Upper Tiber area, Italy”. Hydrol Process 19(10):1909–1924CrossRef
Zurück zum Zitat Moramarco T, Barbetta S, Melone F, Singh VP (2005b) Relating local stage and remote discharge with significant lateral inflow”. J Hydrol Eng 10(1):58–69CrossRef Moramarco T, Barbetta S, Melone F, Singh VP (2005b) Relating local stage and remote discharge with significant lateral inflow”. J Hydrol Eng 10(1):58–69CrossRef
Zurück zum Zitat Moramarco T, Pandolfo C, Singh VP (2008) Accuracy of kinematic wave approximation for flood routing. II. Unsteady analysis”. J Hydrol Eng 13(11):1089–1096CrossRef Moramarco T, Pandolfo C, Singh VP (2008) Accuracy of kinematic wave approximation for flood routing. II. Unsteady analysis”. J Hydrol Eng 13(11):1089–1096CrossRef
Zurück zum Zitat Palisade Corporation (2013) “Evolver, the genetic algorithm solver for Microsoft Excel 2012”. Newfield, New York Palisade Corporation (2013) “Evolver, the genetic algorithm solver for Microsoft Excel 2012”. Newfield, New York
Zurück zum Zitat Perumal M, Moramarco T, Sahoo B, Barbetta S (2007) “A methodology for discharge estimation and rating curve development at ungauged river sites”. Water Resour Res, 43, W02412, doi:10.1029/2005WR004609, 2007, pp. 22 Perumal M, Moramarco T, Sahoo B, Barbetta S (2007) “A methodology for discharge estimation and rating curve development at ungauged river sites”. Water Resour Res, 43, W02412, doi:10.1029/2005WR004609, 2007, pp. 22
Zurück zum Zitat Perumal M, Moramarco T, Sahoo B, Barbetta S (2010) “On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites”. Water Resour Res, 46, W03522, doi:10.1029/2009WR008103, 2010, pp. 9 Perumal M, Moramarco T, Sahoo B, Barbetta S (2010) “On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites”. Water Resour Res, 46, W03522, doi:10.1029/2009WR008103, 2010, pp. 9
Zurück zum Zitat Sahoo B, Perumal M, Moramarco T, Barbetta S (2014) Rating Curve Development at Ungauged River Sites using Variable Parameter Muskingum Discharge Routing Method”. Water Resour Manag 28(2014):3783–3800. doi:10.1007/s11269-014-0709-9 CrossRef Sahoo B, Perumal M, Moramarco T, Barbetta S (2014) Rating Curve Development at Ungauged River Sites using Variable Parameter Muskingum Discharge Routing Method”. Water Resour Manag 28(2014):3783–3800. doi:10.​1007/​s11269-014-0709-9 CrossRef
Zurück zum Zitat Sen Z, Oztopal A (2001) Genetic algorithms for the classification and prediction of precipitation occurrence”. Hydrol Sci J 46(2):255–267CrossRef Sen Z, Oztopal A (2001) Genetic algorithms for the classification and prediction of precipitation occurrence”. Hydrol Sci J 46(2):255–267CrossRef
Zurück zum Zitat Singh RM, Datta B (2006) Identification of Groundwater Pollution Sources Using GA-based Linked Simulation Optimization Model”. J Hydrol Eng 11(2):101–109CrossRef Singh RM, Datta B (2006) Identification of Groundwater Pollution Sources Using GA-based Linked Simulation Optimization Model”. J Hydrol Eng 11(2):101–109CrossRef
Zurück zum Zitat Szymkiewicz R (1996) Numerical stability of implicit four-point scheme applied to inverse linear flow routing”. J Hydrol 176:13–23CrossRef Szymkiewicz R (1996) Numerical stability of implicit four-point scheme applied to inverse linear flow routing”. J Hydrol 176:13–23CrossRef
Zurück zum Zitat Taji K, Miyake T, Tamura H (1999) “On error back propagation algorithm using absolute error function”. Int Conf Syst Man Cybern IEEE SMC '99Confer Proc 5:401–406 Taji K, Miyake T, Tamura H (1999) “On error back propagation algorithm using absolute error function”. Int Conf Syst Man Cybern IEEE SMC '99Confer Proc 5:401–406
Zurück zum Zitat Tayfur G (2009) GA-optimized method predicts dispersion coefficient in natural channels”. Hydrol Res 40(1):65–78CrossRef Tayfur G (2009) GA-optimized method predicts dispersion coefficient in natural channels”. Hydrol Res 40(1):65–78CrossRef
Zurück zum Zitat Tayfur G (2012) Soft Computing in Water Resources Engineering”. WIT Press, Southampton Tayfur G (2012) Soft Computing in Water Resources Engineering”. WIT Press, Southampton
Zurück zum Zitat Tayfur G, Moramarco T (2008) “Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms”. J Hydrol 352(1–2):77–93CrossRef Tayfur G, Moramarco T (2008) “Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms”. J Hydrol 352(1–2):77–93CrossRef
Zurück zum Zitat Tayfur G, Singh VP (2011) Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods”. Water Resour Manag 25(5):1253–1267CrossRef Tayfur G, Singh VP (2011) Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods”. Water Resour Manag 25(5):1253–1267CrossRef
Zurück zum Zitat Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow”. Hydrol Process 21:1848–1859CrossRef Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow”. Hydrol Process 21:1848–1859CrossRef
Zurück zum Zitat Tayfur G, Barbetta S, Moramarco T (2009) Genetic Algorithm-Based Discharge Estimation at Sites Receiving Lateral Inflows”. J Hydrol Eng 14(5):463–474CrossRef Tayfur G, Barbetta S, Moramarco T (2009) Genetic Algorithm-Based Discharge Estimation at Sites Receiving Lateral Inflows”. J Hydrol Eng 14(5):463–474CrossRef
Zurück zum Zitat Wu CL, Chau KW (2006) A flood forecasting neural network model with genetic algorithm”. Int J Environ Pollut 28(3–4):261–273CrossRef Wu CL, Chau KW (2006) A flood forecasting neural network model with genetic algorithm”. Int J Environ Pollut 28(3–4):261–273CrossRef
Metadaten
Titel
Reverse Flood Routing in Natural Channels using Genetic Algorithm
verfasst von
G. Zucco
G. Tayfur
T. Moramarco
Publikationsdatum
01.09.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 12/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-1058-z

Weitere Artikel der Ausgabe 12/2015

Water Resources Management 12/2015 Zur Ausgabe