Skip to main content
Log in

Retention of Cd, Cu, Pb and Zn by Wood Ash, Lime and Fume Dust

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metals are of interest due to their deleterious impacts on both human and ecosystem health. This study investigated the effectiveness of wood ash in immobilizing the heavy metals Pb, Cd, Cu and Zn from aqueous solutions. The effects of initial metal concentrations, solution pH, ash dose and reaction time on metal sorption, as well as the metal sorption mechanisms were studied. To investigate the effect of initial metal concentrations, solutions containing Cd, Zn (25, 50, 75, 100 or 125 mg L−1), Cu (25, 50, 75, 100, 125, 150 or 175 mg L−1) or Pb (250, 500, 750, 1000, 1250, or 1500 mg L−1) were reacted with 10 g L−1 ash for two hours. For the effect of pH, solutions containing 100 mg L−1 of Cd, Cu or Zn or 1500 mg L−1 of Pb were reacted with 15 g L−1 ash over a pH range of 4 to 7. The wood ash was effective in immobilizing the four metals with a sorption range of 41–100 %. The amounts of metals retained by the ash followed the order of Pb > Cu > Cd > Zn. As expected, absolute metal retention increased with increasing initial metal concentrations, solution pH and ash dose. Metal retention by the ash exhibited a two-phase step: an initial rapid uptake of the metal followed by a period of relatively slow removal of metal from solution. Metal retention by the ash could be described by the Langmuir and Freundlich isotherms, with the latter providing a better fit for the data. Dissolution of calcite /gypsum minerals and precipitation of metal carbonate/sulfate like minerals were probably responsible for metal immobilization by the ash in addition to adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J. and Ayres, D. C.: 1993, Chemical principles of environmental pollution. Blackie Academic & Professional, London.

    Google Scholar 

  • Baes, C. F. and Mesmer, R. E.: 1976, The hydrolysis of cations. John Wiley & Sons. New York.

    Google Scholar 

  • Benjamin, M. M. and Leckie, J. O.: 1981, ‘Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide.’ J. Coll. Int. Sci. 79, 209–221.

    Article  CAS  Google Scholar 

  • Blanchard C., Manuanyl M. and Martin, G.: 1984. ‘Removal of heavy metals from waters by means of natural zeolites.’ Wat. Res. 18, 1501–1507.

    Article  CAS  Google Scholar 

  • Calace, N., Nardi, E., Petronio, B. M. and Pietroletti, M.: 2002. ‘Adsorption of phenols by papermill sludges.’ Environ. Pollut. 118, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhurt, A. K., Stanforth, R. R. and Warren, R. S.: 1994, ‘In Situ Remediation of Contaminated Soil at a Lead-Acid Battery Cracking Site Using Phosphates’, I&EC special sumposium, Atlanta, GA, ACS.

    Google Scholar 

  • Coughlin, B. R. and Stone, A. T.: 1995. Nonreversible adsorption of divalent metal ions (Mn, Co, Ni, Cu, and Pb onto goethite: effect of acidication, Fe (II) addition and picolinic acid addition. Environ. Sci. Technol. 29, 2445–55.

    Article  CAS  Google Scholar 

  • Denizli, A., Salih, B. and Piskin, E.: 1997. ‘New sorbents for removal of heavy metal ions: diamine-glow-discharge treated polyhydroxy ethylmethacrylate microspheres.’ J chromatography A. 773, 169–178.

    Article  CAS  Google Scholar 

  • Ferrero, F. and Prati, M. P. G.: 1986. ‘Coal fly ash alginate for the removal of heavy metals from aqueous solutions.’ Annali di Chimica 86:125–132.

    Google Scholar 

  • Garcia-Sanchez, A. and Alvarez-Ayuso, E.: 2002. ‘Sorption of Zn, Cd, and Cr on calcite. Application to purification of industrial wastewaters.’ Min. Engin. 15, 539–547.

    Article  CAS  Google Scholar 

  • Hassett, D. J. and Eylands, K. E.: 1999, ‘Mercury capture on coal combustion fly ash.’ Fuel 78, 243–248.

    Google Scholar 

  • Holm, T. R. and Zhu, X.: 1994. ‘Soption by kaolinite of Cd2+, Pb2+ and Cu2+ from landfill leachate-contaminated groundwater.’ J. Contam. Hydrol. 16, 271–287.

    Article  CAS  Google Scholar 

  • Jain, C. K. and Ram, D.: 1997. ‘Adsorption of lead and zinc on bed sediments of the river kali.’ Wat. Res. 31(1), 154–162.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G. 1986. ‘General purpose adsorption isotherms.’ Environ. Sci. Technol. 20, 895–904.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K., Tu, C., Zhang, W., Cai Y. and Kennelly, E.: 2001. ‘A fern that hyperaccumulates arsenic: A hardy, versatile fast-growing plant helps remove arsenic from contaminated areas.’ Nature 409:579.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Traina, S. J., Logan, T. J. and Ryan, J. A.: 1993. ‘In situ Pb immobilization by apatite.’ Environ. Sci. Technol. 27, 1803–1810.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Logan, T. J., Traina, S. J.: 1995. ‘Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks.’ Environ. Sci. Technol. 29, 1118–1126.

    Article  CAS  Google Scholar 

  • McBride, M. B. 1994. ‘Environmental Chemistry of Soils;’ Oxford University Press: Oxford.

    Google Scholar 

  • McBride, M. B. 1979. ‘Chemisorption of cadmium on calcite surface.’ Soil Sci. Soc. Am. J. 44:26–28.

    Article  Google Scholar 

  • McConnell, D. 1973. ‘In. V. Herausgegeben (ed.) Applied Mineralogy. Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences.’ New York, Springer-Verlag.

    Google Scholar 

  • McGinnis G. 1995. ‘Wood ash in the Great lakes region: Production, characterization and regulation.’ Great lakes Regional Biomass Energy Program, Michigan.

    Google Scholar 

  • Moller P. and Sastri, C. S.: 1973. ‘Exchange studies on single crystals of cacite using 45Ca as the tracer.’ Inog. Nucl. Chem. Lett. 9, 759–763.

    Article  Google Scholar 

  • Morse J. W. 1986. ‘The surface chemistry of calcium carbonate minerals in natural waters: An overview.’ Mar. Chem. 20, 91–112.

    Article  CAS  Google Scholar 

  • Namasivayam, C. and Kadiruellu, K.: 1997. ‘Agricultural solid wastes for the removal of heavy metals: Adsorption of Cu(II) by coirpith carbon.’ Chemosphere. 34(2), 377–399.

    Article  CAS  Google Scholar 

  • Namasivayam, C. and Ranganathan, K.: 1993. ‘Waste Fe(III)/Cr(III) sludge as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater.’ Environ. Pollution. 82, 255–261.

    Article  CAS  Google Scholar 

  • Periasamy, K. and Namasivayam, C.: 1996. ‘Removal of copper (II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater.’ Chemosphere. 32, 769–789.

    Article  CAS  Google Scholar 

  • Rao, M., Parwate, A. V. and Bhole, A. G. 2002. ‘Removal of Cr and Ni from aqueous solution using bagasse and fly ash.’ Waste Manage. 22, 821–830.

    Article  CAS  Google Scholar 

  • Roy, W. R. 1993. ‘Sorption of cadmium and lead by clays from municipal incinerator ash-water suspensions.’ J. Environ. Qual. 22, 537–43.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I. and Raskin, I.: 1995. ‘Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.’ Biotechnology 13, 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R., Sorensen, D., Sims, J., McLean, J., Mahmood, R., Dupont, R., Jurinak, J. and Wagner, K.: 1986. ‘Contaminated surface soils in-place treatment techniques.’ Noyes Publications: Park Ridge.

    Google Scholar 

  • Unger, Y. L. and Fernandes, I. J.: 1990. ‘Short-term effects of wood-ash amendment on forest soils.’ Water Air Soil. Pollut. 49, 315–328.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA). 2001. ‘Remediation technologies screening matrix, reference guide version 4.’ http://www.frtr.gov/matrix2/section4/4-29.html

  • Van Bladel, R., Halen, H. and Cloos, P.: 1993. ‘Calcium-Zinc and Calcium-Cadmium exchange in suspensions of various types of clays.’ Clay Miner. 28, 33–38.

    Article  Google Scholar 

  • Viraraghavan, T. and Rao, G. A. K.: 1991. ‘Removal of cadmium and chromium from wastewater using fly ash.’ 45th Purdue University industrial waste conference proceedings, Purdue University, Lewis Publishers, Inc.

  • Zachara, J. M., Cowan, C. E. and Resch, C. T.: 1991. ‘Sorption of divalent metals on calcite.’ Geochim. Cosm. Acta. 55, 1549–1562.

    Article  CAS  Google Scholar 

  • Zirino, A. and Yamamoto, S.: 1972. ‘A pH-dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater.’ Limnol. Oceanography. 17(5), 661–671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Q. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirenje, T., Ma, L.Q. & Lu, L. Retention of Cd, Cu, Pb and Zn by Wood Ash, Lime and Fume Dust. Water Air Soil Pollut 171, 301–314 (2006). https://doi.org/10.1007/s11270-005-9051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-9051-4

Keywords

Navigation