Skip to main content

Advertisement

Log in

Phytoremediation of Alkylated Polycyclic Aromatic Hydrocarbons in a Crude Oil-Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation uses plants and their associated microorganisms in conjunction with agronomic techniques to remove or degrade environmental contaminants. The objective of the field study was to evaluate the effect of vegetation establishment plus fertilizer addition on the biodegradation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Four replications of the following treatments were used: non-vegetated non-fertilized control; fescue (Lolium arundinaceum Schreb.) − ryegrass (Lolium multiflorum L.) mixture + fertilizer; or bermudagrass (Cynodon dactylon (L.) Pers.) − fescue mixture + fertilizer. Vegetation was successfully established at the site that had an initial total petroleum hydrocarbon (TPH) concentration of 9,175 mg/kg. While alkylated two-ring naphthalenes were degraded in all treatments equally, there was greater degradation of the larger three-ring alkylated phenanthrenes-anthracenes and dibenzothiophenes in the vegetated fertilized plots compared to the non-vegetated non-fertilized plots. In this field study, an increase in rhizosphere soil volume associated with increased root length along with nutrient additions resulted in increased total bacterial, fungal, and polycyclic aromatic hydrocarbon (PAH) degrader numbers that most likely resulted in increased biodegradation of the more recalcitrant alkylated polycyclic aromatic hydrocarbon compounds in the crude oil-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, M.: 1994, Biodegradation and bioremediation. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Anderson, T. A., Guthrie, E. A. and Walton, B. T.: 1993, ‘Bioremediation in the rhizosphere: Plant roots and associated microbes clean contaminated soil’, Environ. Sci. Technol. 27, 2630–2636.

    Article  CAS  Google Scholar 

  • Aprill, W. and Sims, R. C.: 1990, ‘Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil’, Chemosphere 20, 253–265.

    Article  CAS  Google Scholar 

  • Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z. and Rathbone, K.: 2003a, ‘Degradation of crude oil in the rhizosphere of Sorghum bicolor’, Int. J. Phytorem. 5, 225–234.

    CAS  Google Scholar 

  • Banks, M. K., Mallede, H., and Rathbone, K.: 2003b, ‘Rhizosphere microbial characterization in petroleum-contaminated soil’, Soil Sed. Contam. 12, 371-385.

    Google Scholar 

  • Barakat, A. O., Qian, Y., Kim, M. and Kennicutt, M. C.: 2001, ‘Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt’, Environ. Int. 27, 291–310.

    Article  CAS  Google Scholar 

  • Binet, P., Portal, J. M. and Leyval, C.: 2000, ‘Dissipation of 3-6 ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass’, Soil Biol. Biochem. 32, 2011–2017.

    Article  CAS  Google Scholar 

  • Bossert, I. and Bartha, R.: 1984, ‘The fate of petroleum in soil ecosystems’, in: R. Atlas (ed.) Petroleum Microbiology, Macmillan Publ. Co., New York. pp. 435–473.

    Google Scholar 

  • Carmichael, L. M. and Pfaender, F. K.: 1997, ‘The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils’, Biodegradation 8, 1–13.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P. and Hsu, F. C.: 1996, ‘Phytoremediation of soils contaminated with organic pollutants’, Adv. Agron. 56, 55–114.

    CAS  Google Scholar 

  • Donahue, S. J. (ed.): 1992, Reference soil and media diagnostic procedures for the southern region on the United States. Southern Coop. Ser. Bull. 374. Virginia Agric. Exp. Stn., Blacksburg, VA.

  • Douglas, G. S., Bence, A. E., Prince, R. C., McMillen, S. J. and Butler, E. L.: 1996, ‘Environmental stability of selected petroleum hydrocarbon source and weathering ratios’, Environ. Sci. Technol. 30, 2332–2339.

    Article  CAS  Google Scholar 

  • Frick, C. M., Farrell, R. E. and Germida, J. J.: 1999, Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites, Pet. Tech. All. Can., Calgary, AB.

  • Frontera-Suau, R., Bost, F. D., McDonald, T. J. and Morris, P. J.: 2002, ‘Aerobic biodegradation of hopanes and other biomarkers by crude oil-degrading enrichment cultures’, Environ. Sci. Technol., 36, 4585–4592.

    Article  CAS  Google Scholar 

  • Gentry, T. J., Wolf, D. C., Reynolds, C. M. and Fuhrmann, J. J.: 2003, ‘Pyrene and phenanthrene influence on soil microbial populations’, Bioremed. J. 7, 53–68.

    CAS  Google Scholar 

  • Haines, J. R., Herrmann, R., Lee, K., Cobanli, S. and Blaise, C.: 2002, ‘Microbial population analysis as a measure of ecosystem restoration’, Bioremed. J. 6, 283–296.

    CAS  Google Scholar 

  • Haines, J. R., Wrenn, B. A., Holder, E. L., Strohmeier, K. L., Herrington, R. T. and Venosa, A.D.: 1996, ‘Measurement of hydrocarbon-degrading microbial populations by a 96-well most-probable-number procedure’, J. Ind. Microbiol. 16, 36–41.

    Article  CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., and Fortman, T. J.: 2002, ‘Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils’, Bioremed. J. 6, 321–336.

    CAS  Google Scholar 

  • Hutchinson, S. L., Banks, M. K. and Schwab, A. P.: 2001, ‘Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer’, J. Environ. Qual. 30, 395–403.

    CAS  Google Scholar 

  • Joner, E. J., Corgie, S. C., Amellal, N. and Leyval, C.: 2002, ‘Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere’, Soil Biol. Biochem. 34, 859–864.

    Article  CAS  Google Scholar 

  • Kennicutt, M. C.: 1988, ‘The effect of biodegradation on crude oil bulk and molecular composition’, Oil Chem. Pollut. 4, 89–112.

    CAS  Google Scholar 

  • Kinghorn, F.: 1983, An introduction to the physics and chemistry of petroleum, John Wiley & Sons, Ltd., New York.

    Google Scholar 

  • Krutz, L. J., Beyrouty, C. A., Gentry, T. J., Wolf, D. C., and Reynolds, C. M.: 2005. ‘Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in bermudagrass rhizosphere’, Biol. Fert. Soils 41, 359–364.

    Article  Google Scholar 

  • Liste, H. H. and Alexander, M.: 1999, ‘Rapid screening of plants promoting phenanthrene degradation’, J. Environ. Qual. 28, 1376–1377.

    Article  CAS  Google Scholar 

  • Miya, R. K. and Firestone, M. K.: 2001, ‘Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris’, J. Environ. Qual. 30, 1911–1918.

    Article  CAS  Google Scholar 

  • Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C. A. and Reynolds, C. M.: 1997, ‘Rhizosphere microbial populations in contaminated soils’, Water Air Soil Pollut. 95, 165–178.

    Article  CAS  Google Scholar 

  • Plaza, G., Nalecz-Jawecki, G., Ulfig, K., and Brigmon, R. L.: 2005, ‘The application of bioassays as indicators or petroleum-contaminated soil remediation’, Chemosphere 59, 289-296.

    Article  CAS  Google Scholar 

  • Prince, R. C., Elmendorf, D. L, Lute, J. R., Hsu, C. S., Haith, C. E., Senius, J. D., Dechert, G. J., Douglas, G. S. and Butler, E. L.: 1994, ‘17i(H),21k(H)-Hopane as a conserved internal marker for estimating the biodegradation of crude oil’, Environ. Sci. Technol. 28, 142–145.

    Article  CAS  Google Scholar 

  • Reynolds, C. M., Wolf, D. C., Gentry, T. J., Perry, L. B., Pidgeon, C. S., Koenen, B. A., Rogers, H. B. and Beyrouty, C. A.: 1999, ‘Plant enhancement of indigenous soil micro-organisms: A low-cost treatment of contaminated soils’, Polar Rec. 35, 33–40.

    Article  Google Scholar 

  • Rock, S. A. and Sayre, P. G.: 1998, ‘Phytoremediation of hazardous wastes: Potential regulatory acceptability’, Remediation 8, 5–17.

    Google Scholar 

  • Rovina, A. D. and McDougall, B. M.: 1967, ‘Microbiological and biochemical aspects of the rhizosphere’, in: A. D. McClaren and G. H. Peterson (eds.), Soil Biochemistry, Marcel Dekker, Inc., New York. pp. 417–463.

    Google Scholar 

  • Schwab, A. P. and Banks, M. K.: 1994, ‘Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone’, in: T. A. Anderson and J. R. Coats (eds.) Bioremediation through rhizosphere technology, ACS Symp. Ser. 563. Am. Chem. Soc., Washington, D.C. pp. 132–141.

  • Teal, J. M., Farrington, J. W., Burns, K. A., Stegeman, J. J., Tripp, B. W., Woodin, B. and Phinney C.: 1992, ‘The West Falmouth oil spill after 20 years: Fate of fuel oil compounds and effects on animals’, Mar. Pollut. Bull. 24, 607–614.

    CAS  Google Scholar 

  • Thoma, G. J., Lam, T. B. and Wolf, D. C.: 2003a, ‘Mathematical modeling of phytoremediation of oil-contaminated soil: Model development’, Int. J. Phytorem. 5, 41–55.

    CAS  Google Scholar 

  • Thoma, G. J., Lam, T. B. and Wolf, D. C.: 2003b, ‘Mathematical modeling of phytoremediation of oil-contaminated soil: Sensitivity analysis’, Int. J. Phytorem. 5, 125–136.

    CAS  Google Scholar 

  • Townsend. R. T., Bonner, J. S. and Autenrieth, R. L.: 2000, ‘Microbial dynamics during bioremediation of a crude oil-contaminated coastal wetland’, Bioremed. J. 4, 203–218.

    CAS  Google Scholar 

  • U. S. EPA: 1998, ‘SW-846 online test methods for evaluating solid wastes physical/chemical methods’, [Online]. Available at: http://www.epa.gov/epaoswer/hazwaste/test/main.htm (verified 5 January 2005).

  • Venosa, A. D., Suidan, M. T., King, D. and Wrenn, B. A.: 1997, ‘Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach’, J. Ind. Microbiol. Biotechnol. 18, 131–139.

    Article  CAS  Google Scholar 

  • Walworth, J. L., Woolard, C. R., Braddock, J. F. and Reynolds, C. M.: 1997, ‘Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: An approach to determining optimum levels’, J. Soil Cont. 6, 465–480.

    CAS  Google Scholar 

  • White, Jr., P. M., Wolf, D. C., Thoma, G. J. and Reynolds, C. M.: 2003, ‘Influence of organic and inorganic soil amendments on plant growth in crude oil-contaminated soil’, Int. J. Phytoremed. 5, 381–397.

    CAS  Google Scholar 

  • Wrenn, B. A. and Venosa, A. D.: 1996, ‘Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure’, Can. J. Microbiol. 42, 252–258.

    Article  CAS  Google Scholar 

  • Zuberer, D. A.: 1994, ‘Recovery and enumeration of viable bacteria’, in: R. W. Weaver (ed.) Methods of soil analysis. Part 2. Soil Sci. Soc. Am. 5, 119–144./Weaver

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane C. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, P.M., Wolf, D.C., Thoma, G.J. et al. Phytoremediation of Alkylated Polycyclic Aromatic Hydrocarbons in a Crude Oil-Contaminated Soil. Water Air Soil Pollut 169, 207–220 (2006). https://doi.org/10.1007/s11270-006-2194-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-2194-0

Keywords

Navigation