Skip to main content
Log in

Bioaccumulation of Total Mercury and Monomethylmercury in the Earthworm Eisenia Fetida

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Bioaccumulation factors (BAFs) for inorganic mercury in earthworms are usually < 1; however, factors up to ∼10 have been reported. Little information is available concerning the bioaccumulation of organic mercury in earthworms from actual contaminated soils and thus there has been uncertainty in the risk characterization phase of ecological risk assessments of mercury-contaminated sites. This study was initiated to determine the rate of uptake and bioaccumulation of total mercury (T-Hg) and monomethylmercury (MMHg) in Eisenia fetida from soils which have been contaminated with mercury for approximately 30 years. The study consisted of a 28-day uptake phase in three mercury-contaminated soils and one soil with background concentrations of mercury followed by a 14-day depuration phase in background soil only. Total mercury concentrations in the study soils ranged from 85 to 11,542 μg kg−1 dry weight soil; MMHg concentrations ranged from 1.12 to 7.35 μg kg−1 dry weight soil. Time to 90% steady states for T-Hg ranged from 36 to 42 days. A steady state did not occur for any of the MMHg exposures during the 42-day study; estimated time to 90% steady state varied from 97 to 192 days. BAFs for T-Hg ranged from 0.6 to 3.3. BAFs for MMHg ranged from 175 to 249. The BAFs for T-Hg and MMHg were larger in earthworms exposed to the lower contaminated soils and smaller in the higher mercury-contaminated soils. The absolute concentrations of T-Hg and MMHg bioaccumulated in E. fetida, however, were higher in the earthworms exposed to the higher mercury soils and lower in the less mercury-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM (American Society for Testing and Materials): 1998, ‘Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm Eisenia fetida’, ASTM Designation E 1676-97, in 1998 Annual Book of ASTM Standards, Vol. 11.05, American Society for Testing and Materials, Philadelphia, PA, USA, pp. 1056–1074.

  • Beyer, W. N., Cromartie, E. and Moment, G. B.: 1985, ‘Accumulation of methylmercury in the earthworm, Eisenia foetida, and its Effect on Regeneration’, Bull. Environ. Contam. Toxicol. 35, 157–162.

    Article  CAS  Google Scholar 

  • Blau, G. E. and Agin, G. L.: 1978, A Users Manual for BIOFAC: A Computer Program for Characterizing the Rates of Uptake and Clearance of Chemicals in Aquatic Organisms, Dow Chemical Co., Midland, MI, USA.

    Google Scholar 

  • Boudou, A. and Ribeyre, F.: 1997, ‘Mercury in the food web: Accumulation and transfer mechanisms’, in A. Sigel and H. Sigel (eds), Metal Ions in Biological Systems, Vol. 34, Mercury and its Effects on Environment and Biology, Marcel Dekker, Inc., NY, USA, pp. 289–319.

    Google Scholar 

  • Buckman, M. F.: 1999, ‘NOAA Screening Quick Reference Tables’, HAZMAT Rep. 99-1’, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, Seattle, WA, USA, 11 pp.

  • Bull, K. R., Roberts, R. D., Inskip, M. J. and Goodman, G. T.: 1977, ‘Mercury concentrations in soil, grass, earthworms and small mammals near an industrial emission source’, Environ. Pollut. 12, 135–140.

    Article  Google Scholar 

  • Cocking, D., Hayes, R., King, M. L., Rohrer, M. J., Thomas, R. and Ward, D.: 1991, ‘Compartmentalization of mercury in biotic components of terrestrial flood plain ecosystems adjacent to the South River at Waynesboro, Va.’, Water Air Soil Pollut. 57–58, 159–170.

    Article  Google Scholar 

  • Cocking, D., King, M. L., Ritchie, L. and Hayes, R.: 1994, ‘Earthworm Bioaccumulation of Mercury from Contaminated Flood Plain Soils’, in C. J. Watras and J. W. Huckabee (eds), Mercury Pollution Integration and Synthesis, Lewis Publishers, Boca Raton, FL, USA, pp. 381–395.

    Google Scholar 

  • European Commission: 1999, ‘European Union Risk Assessment Report benzene, C10−13 alkyl derives, Volume 3’, EUR 19011, in B. G. Hansen, S. J. Munn, G. Schoening, M. Luotamo, A. van Haelst, C. J. A. Heidorn, Pellegrini, R. Allanou and H. Loonen (eds), Office for Official Publications of the European Communities, Luxembourg.

  • Fischer, E. and Koszorus, L.: 1992, ‘Sublethal effects, accumulation capacities and elimination rates of As, Hg and Se in the Manure Worm, Eisenia fetida (Oligochaeta, Lumbricidae)’, Pedobiologia 36, 172–178.

    CAS  Google Scholar 

  • Fleckenstein, J. and Graff, O.: 1982, ‘Schwermetallaufnahme aus Mullkompost Durch den Regenwurm Eisenia foetida (Savigny 1826)’, Landbauforschung Volkenrode 32, 198–202.

  • Gibbs, M. H., Wicker, L. F. and Stewart, A. J.: 1996, ‘A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia fetida’, Environ. Toxicol. Chem. 15, 360–368.

    Article  CAS  Google Scholar 

  • Helmke, P. A., Robarge, W. P., Korotev, R. L. and Schomberg, P. J.: 1979, ‘Effects of soil-applied sludge on concentrations of elements in earthworms’, J. Environ. Qual. 8, 322–327.

    Article  CAS  Google Scholar 

  • Ireland, M. P.: 1979, ‘Metal accumulation by the earthworms Lumbricus rubellus, Dendrobaena veneta and Eiseniella tetraedra living in heavy metal polluted sites’, Environ. Pollut. 19, 201–206.

    Article  CAS  Google Scholar 

  • Jager, T.: 1998, ‘Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta)’, Environ. Toxicol. Chem. 17, 2080–2090.

    Article  CAS  Google Scholar 

  • Janssen, R. P. T., Posthuma, L., Baerselman, R., Den Hollander, H. A., Van Veen, R. P. M. and Peijnenburg, W. J. G. M.: 1997, ‘Equilibrium partitioning of heavy metals in Dutch field soils. II. Prediction of metal accumulation in earthworms’, Environ. Toxicol. Chem. 12, 2479–2488.

    Article  Google Scholar 

  • Jeffries, J. R. and Audsley, E.: 1988, ‘A Population Model for the Earthworm Eisenia foetida’, in C. A. Edwards and E. F. Neuhauser (eds), Earthworms in Waste and Environmental Management, SPB Acad Publ bv The Hague, The Netherlands, pp. 119–134.

    Google Scholar 

  • Keating, M. H., Mahaffey, K. R., Shoeny, R., Rice, G. E., Bulluck, O. R., Ambrose, R. B., Jr., Swartout, J. and Nichols, J. W.: 1997, ‘Mercury Study Report to Congress, Vol. 1: Executive Summary’, EPA-452/H-97-003, U.S. Environmental Protection Agency, Washington, DC, USA.

  • Lanno, R., Wells, J., Conder, J., Bradham, K. and Basta, N.: 2004, ‘The bioavailability of chemicals in soil for earthworms’, Ecotoxicol. Environ. Safety 57, 39–47.

    Article  CAS  Google Scholar 

  • Lock, K. and Janssen, C. R.: 2001a, ‘Zinc and cadmium body burdens in terrestrial oligochates: use and significance in environmental risk assessment’, Environ. Toxicol. Chem. 20, 2067–2072.

    Article  CAS  Google Scholar 

  • Lock, K. and Janssen, C. R.: 2001b, ‘Cadmium toxicity for terrestrial invertebrates: Taking soil parameters affecting bioavailability into account’, Ecotoxicology 10, 315–322.

    Article  CAS  Google Scholar 

  • Lock, K. and Janssen, C. R.: 2003, ‘Influence of aging on metal availability in soils’, Rev. Environ. Contam. Toxicol. 178, 1–21.

    Article  CAS  Google Scholar 

  • Loux, N. T.: 1998, ‘An Assessment of mercury-species-dependent binding with natural organic carbon’, Chem. Speciation Bioavailability 10, 127–136.

    CAS  Google Scholar 

  • Ma, W.-C.: 2004, ‘Estimating heavy metal accumulation in oligochaete earthworms: A meta-analysis of field data’, Environ. Contam. Toxicol. 72, 663–670.

    CAS  Google Scholar 

  • Ma, W.-C., Edelman, T., Van Beersum, I. and Jans, T.: 1983, ‘Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex. Influence of soil pH and organic matter’, Bull. Environ. Contam. Toxicol. 30, 424–427.

    Article  CAS  Google Scholar 

  • Major, M. A. and Rosenblatt, D. H.: 1991, ‘The octanol/water partition coefficient of methylmercuric chloride and methylmercuric hydroxide in pure water and salt solutions’, Environ. Toxicol. Chem. 10, 5–8.

    Article  CAS  Google Scholar 

  • Munthre, J.: 1994, ‘The Atmospheric Chemistry of Mercury: Kinetic Studies of Redox Reactions’, in Watras, C. J. and Huckabee, J. W. (eds), Mercury Pollution Integration and Synthesis, Lewis Publishers, Boca Raton, FL, USA, pp. 273–279.

    Google Scholar 

  • Napier, B. A., Kennedy, W. E., Ikenberry, T. A., Hunacek, M. M. and Kennedy, A. M.: 2004, ‘Technical Basis for the Derivation of Authorized Limits for Units of the Hanford Reach National Monument’, PNNL-14531, Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Neuhauser, E. F., Cukic, Z. V., Malecki, M. R., Loehr, R. C. and Durkin, P. A.: 1995, ‘Bioconcentration and biokinetics of heavy metals in the earthworm’, Environ. Pollut. 89, 293–301.

    Article  CAS  Google Scholar 

  • Neuhauser, E. F., Hartenstein, R. and Kaplan, D. L.: 1980, ‘Growth of the earthworm Eisenia foetida in relation to population density and food rationing’, Oikos 35, 93–98.

    Article  Google Scholar 

  • Newman, M. C. and Unger, M. A.: 2003, Fundamentals of Ecotoxicology (2nd ed.), Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Peijnenburg, W. J. G. M., Baerselman, R., de Groot, A. C., Jager, T., Posthuma, L. and Van Veen, R. P. M.: 1999a, ‘Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei’, Ecotoxicol. Environ. Safety 44, 294–310.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G. M., Posthuma, L., Zweers, P. G. P. C., Baerselman, R., de Groot, A. C., Van Veen, R. P. M. and Jager, T.: 1999b, ‘Prediction of metal bioavailability in Dutch field soils for the oligochaete Enchytraeus crypticus’, Ecotoxicol. Environ. Safety 43, 170–186.

    Article  CAS  Google Scholar 

  • PMRA: 2004, ‘Regulatory Note, Methoxyfenozide’, REG2004-08, Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario, Canada.

  • Sample, B. E., Suter, G. W., II, Beauchamp, J. J. and Efroymson, R. A.: 1999, ‘Literature-derived bioaccumulation models for earthworms: Development and validation’, Environ. Toxicol. Chem. 18, 2110–2120.

    Article  CAS  Google Scholar 

  • Seigneur, C., Lohman, K., Pai, P., Heim, K., Mitchell, D. and Levin, L.: 1999, ‘Uncertainty analysis of regional mercury exposure’, Water Air Soil Pollut. 112, 151–162.

    Article  CAS  Google Scholar 

  • Sijm, D., Kraaij, R. and Belfroid, A.: 2000, ‘Bioavailability in soil or sediment: Exposure of different organisms and approaches to study it’, Environ. Pollut. 108, 113–119.

    Article  CAS  Google Scholar 

  • Stein, E. D., Cohen, Y. and Winer, A. M.: 1996, ‘Environmental distribution and transformation of mercury compounds’, Crit. Rev. Environ. Sci. Technol. 26, 1–43.

    Article  CAS  Google Scholar 

  • Svendsen, C. and Weeks, J. M.: 1997, ‘Relevance and applicability of a simple earthworm biomarker of copper exposure. II. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus’, Ecotoxicol. Environ. Safety 36, 80–88.

    Article  CAS  Google Scholar 

  • Talmage, S. S. and Walton, B. T.: 1993, ‘Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site’, Ecotoxicology 2, 243–256.

    Article  CAS  Google Scholar 

  • U.S. Congress: 1972, ‘Federal Water Pollution Control Act’, 33 U.S.C. pp. 1251–1376, Pub. L. No 95-500, Sect. 307, 86 Stat. 816, U.S. Congress, Washington, DC, USA.

  • van Gestel, C. A. M., Dirven-van Breemen, E. M. and Baerselman, R.: 1992, ‘Influence of environmental conditions on the growth and reproduction of the earthworm Eisenia andrei in an artificial soil substrate’, Hydrobiologia 36, 109–120.

    Google Scholar 

  • Wolfe, M. F., Schwarzbach, S. and Sulaiman, R. A.: 1998, ‘Effect of mercury on wildlife: A comprehensive review’, Environ. Toxicol. Chem. 17, 146–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis T. Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, D.T., Turley, S.D., Fisher, D.J. et al. Bioaccumulation of Total Mercury and Monomethylmercury in the Earthworm Eisenia Fetida . Water Air Soil Pollut 170, 37–54 (2006). https://doi.org/10.1007/s11270-006-3113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-3113-0

Keywords

Navigation