Skip to main content
Log in

Landfill Methane Oxidation in Engineered Soil Columns at Low Temperature

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Though engineered covers have been suggested for reducing landfill methane emissions via microbial methane oxidation, little is known about the covers' function at low temperature. This study aimed to determine the methane consumption rates of engineered soil columns at low temperature (4–12°C) and to identify soil characteristics that may enhance methane oxidation in the field. Engineered soils (30 cm thick) were mixtures of sewage sludge compost and de-inking waste, amended with sand (SDS soil) or bark chips (SDB soil). At 4–6°C, we achieved rates of 0.09 gCH4 kgTS−1d−1 (0.02 m3 m−2d−1) and 0.06 gCH4 kgTS−1d−1 (0.009 m3 m−2d−1) with SDS and SDB soils, respectively. With SDS, good movement and exchange of oxygen in porous soil moderated the slowdown of microbial activity so that the rate dropped only by half as temperature declined from 21–23°C to 4–6°C. In SDB, wet bark chips reduced the soil's air-filled porosity and intensified non-methanotrophic microbial activity, thus reducing the methane consumption rate at 4–6°C to one fourth of that at 21–23°C. In conclusion, soil characteristics such as air-filled porosity, water holding capacity, quantity and stabilization of organic amendments that affect the movement and exchange of oxygen are important variables in designing engineered covers for high methane oxidation at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, R.M., & Bartha, R. (1998). Microbial Ecology: Fundamentals and Applications. 4th ed., Menlo Park, Addison Wesley Longman.

    Google Scholar 

  • Berger, J., Fornés, L.V., Ott, C., Jager, J., Wavra, B. & Zanke, U. (2005). Methane Oxidation in a Landfill Cover with Capillary Barrier, Waste Man. 25, 369–373.

    Article  CAS  Google Scholar 

  • Boeckx, P. & Van Cleemput, O. (1996). Methane Oxidation in a Neutral Landfill Cover Soil: Influence of Moisture Content, Temperature, and Nitrogen-Turnover, J. Environ. Qual. 25, 178–183.

    CAS  Google Scholar 

  • Boeckx, P., Van Cleemput, O. & Villaralvo, I. (1996). Methane Emission from a Landfill and the Methane Oxidising Capacity of Its Covering Soil, Soil Biol. Biochem. 28(10/11), 1397–1405.

    Article  CAS  Google Scholar 

  • Bogner, J., Meadows, M. & Czepiel, P. (1997a). Fluxes of Methane Between Landfills and the Atmosphere: Natural and Engineered Controls, Soil Use Manage. 13, 268– 277.

    Google Scholar 

  • Bogner, J.E., Spokas, K.A. & Burton, E.A. (1997b). Kinetics of Methane Oxidation in a Landfill Cover Soil: Temporal Variations, a Whole-Landfill Oxidation Experiment, and Modeling of Net CH4 Emissions, Environ. Sci. Technol. 31(9), 2504–2514.

    Article  CAS  Google Scholar 

  • Börjesson, G. (1997). Methane Oxidation in Landfill Cover Soils, Ph.D. thesis, Acta Universitatis Agriculturae Sueciae, Agraria 44, Swedish University of Agricultural Sciences, Uppsala.

  • Börjesson, G., Danielsson, Å. & Svensson, B.H. (2000). Methane Fluxes from a Swedish Landfill Determined by Geostatistical Treatment of Static Chamber Measurements, Environ. Sci. Technol. 34, 4044–4050.

    Article  CAS  Google Scholar 

  • Börjesson, G., Sundh, I. & Svensson, B. (2004). Microbial Oxidation of CH4 at Different Temperatures in Landfill Cover Soils, FEMS Microbiol. Ecol. 48, 305–312.

    Article  CAS  Google Scholar 

  • Börjesson, G., Sundh, I., Tunlid, A. & Svensson, B.H. (1998a) Methane Oxidation in Landfill Cover Soils, as Revealed by Potential Oxidation Measurements and Phospholipid Fatty Acid Analyses, Soil Biol. Biochem. 30(10/11), 1423–1433.

    Article  Google Scholar 

  • Börjesson, G., Sundh, I., Tunlid, A., Frostegård, Å. & Svensson, B.H. (1998b). Microbial Oxidation of CH4 at High Partial Pressures in an Organic Landfil Cover Soil under Different Moisture Regimes, FEMS Microbiol. Ecol. 26, 207– 217.

    Google Scholar 

  • Christophersen, M., Linderod, L., Erland Jensen, P. & Kjeldsen, P. (2000). Methane Oxidation at Low Temperatures in Soil Exposed to Landfill Gas, J. Environ. Qual. 29, 1989–1997.

    CAS  Google Scholar 

  • Clesceri, L.S., Greenberg, A.E. & Eaton A.D. (eds.)(1998), Standard Methods for the Examination of Water and Wastewater, 20th ed., Joint publication of APHA, AWWA and WEF, United Book Press, Baltimore.

    Google Scholar 

  • Cossu, R., Raga, R. & Zane, M. (2003). Methane Oxidation and Attenuation of Sulphurated Compounds in Landfill Top Cover Systems: Lab-Scale Test, Proceedings Sardinia, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 6–10 October, 2003.

  • Czepiel, P.M., Mosher, B., Crill, P.M. & Harriss, R.C. (1996a). Quatifying the Effect of Oxidation on Landfill Methane Emissions, J. of Geophys. Res. 101(no. D11), 16721–16729.

    Article  CAS  Google Scholar 

  • Czepiel, P.M., Mosher, B., Harriss, R.C., Shorter, J.H., McManus, J.B., Kolb, C.E., Allwine, E. & Lamb, B.K. (1996b). Landfill Methane Emissions Measured by Enclosure and Atmospheric Tracer Methods, J. Geophys. Res. 101(no.D11), 16711–16719.

    Article  CAS  Google Scholar 

  • De Visscher, A., Schippers, M. & Van Cleemput, O. (2001). Short-Term Kinetic Response of Enhanced Methane Oxidation in Landfill Cover Soils to Environmental Factors, Biol. Fertil. Soils 33, 231–237.

    Article  Google Scholar 

  • De Visscher, A., Thomas, D., Boeckx, P. & Van Cleemput O. (1999). Methane Oxidation in Simulated Landfill Cover Soil Environments, Environ. Sci. Technol. 33, 1854– 1859.

    Article  Google Scholar 

  • De Visscher, A. & Van Cleemput O. (2003). Simulation Model for Gas Diffusion and Methane Oxidation in Landfill Cover Soils, Waste Man. 23, 581–591.

    Article  CAS  Google Scholar 

  • Dilly, O. (2001). Microbial Respiratory Quotient during Basal Metabolism and After Glucose Amendment in Soils and Litter, Soil Biol. Biochem. 33, 117–127.

    Article  CAS  Google Scholar 

  • Dilly, O. (2003). Regulation of the Respiratory Quotient of Soil Microbiota by Availability of Nutrients, FEMS Microbiol. Ecol. 43, 375–381.

    Article  CAS  Google Scholar 

  • Einola J.-K.M. (2002). Effects of material, water content and low temperature on biological oxidation of methane in landfill cover soil, M.Sc. thesis, University of Jyväskylä, Dept. of biological and environmental sciences, Jyväskylä.

  • European Standard EN 27888 (1993E). Water quality–Determination of Electrical Conductivity, European Committee for Standardization, Brussels.

  • Figueroa, R.A. (1993). Methane Oxidation in Landfill Top Soils, Proceedings Sardinia 93, Fourth International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 11–15 October 1993, 701–715.

  • Finnish Association of Landscape Industries (1997). Recommeded Values for Garden Soil Quality, Brochure, Finnish Association of Landscape Industries, Helsinki.

  • Finnish Ministry of the Environment (1994). Contaminated Soils and Their Treatment in Finland, Memorandum 5/1994, Finnish Ministry of the Environment, Dept. of Environmental Protection, Helsinki.

  • Fornés, L., Ott, C. & Jager, J. (2003). Development of a Landfill Cover with Capillary Barrier for Methane Oxidation–Methane Oxidation in a Compost Layer, Proceedings Sardinia, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Gagliari, Italy, 6–10 October, 2003.

  • Galle, B., Samuelsson, J., Svensson, B.H. & Börjesson, G. (2001). Measurement of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR Absorption Spectroscopy, Environ. Sci. Technol. 35, 21–25.

    Article  CAS  Google Scholar 

  • Gebert, J., Groengroeft, A. & Miehlich, G. (2003). Kinetics of Microbial Landfill Methane Oxidation in Biofilters, Waste Man. 23, 609–619.

    Article  CAS  Google Scholar 

  • Hanson, R.S. & Hanson, T.E. (1996). Methanotrophic Bacteria, Microbiol. Rev. 60(2), 439–471.

    CAS  Google Scholar 

  • Hilger, H.A., Wollum, A.G. & Barlaz, M.A. (2000). Landfill Methane Oxidation Response to Vegetation, Fertilization, and Liming, J. Environ. Qual. 29, 324–334.

    Article  CAS  Google Scholar 

  • Hillel, D. (1998). Environmental Soil Physics, Academic Press, San Diego.

    Google Scholar 

  • Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. & Johnson, A. (eds.) (2001). Climate change 2001: The Scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York.

    Google Scholar 

  • Hovde, D.C., Stanton, A.C., Meyers, T.P. & Matt, D.R. (1995). Methane Emissions from a Landfill Measured by Eddy Correlation Using a Fast Response Diode Laser Sensor, J. Atmos. Chem. 20, 141–162.

    Article  CAS  Google Scholar 

  • Humer, M. & Lechner, P. (1999). Alternative Approach to the Elimination of Greenhouse Gases from Old Landfills, Waste Man. Res. 17(6), 443–452.

    Article  CAS  Google Scholar 

  • Humer, M. & Lechner, P. (2001). Microorganisms against the Greenhouse Effect–Suitable Cover Layers for the Elimination of Methane Emissions from Landfills, Proceedings from the Solid Waste Association of North America's (SWANA), 6th Annual Landfill Symposium, Publication GR-LM-0006, San Diego, June 2001, 305–318.

  • International Standard ISO 10390 (1994(E)). Soil quality–Determination of pH, 1st ed., International Organization for Standardization, Switzerland.

    Google Scholar 

  • Kightley, D., Nedwell, D.B. & Cooper, M. (1995). Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms, Appl. Environ. Microbiol. 61, 592–601.

    CAS  Google Scholar 

  • Lebedev, V.S., Gorbatyuk, O.V., Ivanov, D.V., Nozhevnikova, A.N. & Nekrasova, V.K. (1994). Biochemical Processes of Biogas Formation and Oxidation in Municipal Waste Dump, J. Ecol. Chem. 3(2), 121–132.

    Google Scholar 

  • Leege, P.B., Miller, M. & Thompson, W.H. (1997). Quick-Test to Approximate Water-Holding Capacity of Compost, Test Methods for the Examination of Composting and Compost, 1st ed., The U.S. Composting council.

  • Madigan, M.T., Martinko, J.M. & Parker, J. (2000). Brock Biology of Microorganisms, 9th ed., Prentice-Hall, Upper Saddle River.

    Google Scholar 

  • Morris, J.W.F., Fourie, A.B., Blight, G.E. & Mistry, P. (1999). Greenhouse Gas Emissions from Landfills in Semi-Arid Climates: A Field Study in South Africa, Proceedings Sardinia 99, Seventh International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, October, IV(4–8), 43–46.

  • Mosher, B.W., Czepiel, P.M., Harriss, R.C., Shorter, J.H., Kolb, C.E., McManus, J.B., Allwine, E. & Lamb, B.K. (1999). Methane Emissions at Nine Landfill Sites in the Northeastern United States, Environ. Sci. Technol. 33, 2088–2094.

    Article  CAS  Google Scholar 

  • Nozhevnikova, A.N., Nekrasova, V.K., Lebedev, V.S. & Lifshits, A.B. (1993). Microbiological processes in landfills, Wat. Sci. Tech. 27(2), 243–252.

    CAS  Google Scholar 

  • Pokryszka, Z., Tauziede, C. & Cassini, P. (1995). Development and Validation of a Method for Measuring Biogas Emissions Using a Dynamic Chamber, Proceedings Sardinia 95, Fifth International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, October, 1995, III(2–6), 495– 506.

  • Ren, T., Amaral, J.A. & Knowles, R. (1997). The Response of Methane Consumption by Pure Cultures of Methanotrophic Bacteria to Oxygen, Can. J. Microbiol. 43, 925–928.

    Article  CAS  Google Scholar 

  • Savanne, D., Arnaud, A., Beneito, A., Berne, P., Burkhalter, R., Cellier, P., Gonze, M.A., Laville, P., Levy, F., Milward, R., Pokryszka, Z., Sabroux, J.C., Tauziede, C. & Tregoures, A. (1997). Comparison of Different Methods for Measuring Landfill Methane Emissions, Proceedings Sardinia 97, Sixth International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy,13–17 October, 1997, IV, 81– 85.

  • Scharff, H. & Hensen, A. (1999). Methane Emission Estimates for Two Landfills in the Netherlands Using Mobile TDL Measurement, Proceedings Sardinia 99, Seventh International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, October, 1999, it IV(4–8), 71–78.

  • Sparks, D.L. (1995). Environmental Soil Chemistry, Academic Press, San Diego.

    Google Scholar 

  • Stein, V.B. & Hettiaratchi, J.P.A. (2001). Methane Oxidation in Three Alberta Soils: Influence of Soil Parameters and Methane Flux Rate, Environ. Tech. 22, 101–111.

    Article  CAS  Google Scholar 

  • Streese, J. & Stegmann, R. (2003). Microbial Oxidation of Methane from Old Landfills in Biofilters', Waste Man. 23, 573–580.

    Article  CAS  Google Scholar 

  • US EPA method 3051 (1994). Microwave assisted acid digestion of sediments, sludges, soils and oils, http://www.epa. gov/epaoswer/hazwaste/test/pdfs/3051.pdf, cited on April 3, 2006.

  • Watzinger, A., Reichenauer, T.G., Blum, W.E.H., Gerzabek, M.H. & Zechmeister-Boltenstern, S. (2005). The Effect of Landfill Leachate Irrigation on Soil Gas Composition: Methane Oxidation and Nitrous Oxide formation, Water, Air and Soil Pollut. 164, 295–313.

    Article  CAS  Google Scholar 

  • Weisstein, E.W. (2006) Diffusion coefficient, http://scienceworld.wolfram.com/physics/DiffusionCoefficient.html, cited on April 3, 2006.

  • Whalen, S.C., Reeburgh, W.S. & Sandbeck, K.A. (1990). Rapid Methane Oxidation in a Landfill Cover Soil, Appl. Environ. Microbiol. 56(11), 3405–3411.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riitta H. Kettunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettunen, R.H., Einola, JK.M. & Rintala, J.A. Landfill Methane Oxidation in Engineered Soil Columns at Low Temperature. Water Air Soil Pollut 177, 313–334 (2006). https://doi.org/10.1007/s11270-006-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9176-0

Keywords

Navigation