Skip to main content
Log in

Removal of Pentachlorophenol by Adsorption on Magnetite-immobilized Chitin

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The application of magnetite-immobilized chitin in pentachlorophenol (PCP) removal was demonstrated in this study. The physicochemical parameters for immobilization of chitin by magnetite, and for PCP adsorption using magnetite-immobilized chitin were optimized. For chitin immobilization, the optimized conditions were: magnetite to chitin (m:c) ratio at 1:2, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The immobilization efficiency (IE) was 99.4% and immobilization capacity (IC) was 2.0 mg chitin mg−1 magnetite. High initial pH (pH > 11) and temperature (>30°C) lowered the IE and IC. For PCP (10 mg l−1) adsorption, the optimized conditions were: 1,500 mg l−1 immobilized chitin, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The removal efficiency (RE) was 57.9% and removal capacity (RC) was 5.4 mg g−1. The adsorption ability of immobilized chitin decreased with pH and temperature increased. However, increasing the amount of immobilized chitin (24,000 mg l−1) can increase the RE up to 92%. Both chitin immobilization and PCP adsorption exhibited Langmuir and Freundlich adsorption isotherms. Results in this study indicated that magnetite-immobilized chitin was a cost-effective and environmental friendly adsorbent to remove environmental pollutants such as PCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiri, F., Rahman, M. M., Börnick, H., & Worch, E. (2004). Sorption behaviour of phenols on natural sandy aquifer material during flow-through column experiments: The effect of pH. Acta Hydrochimica et Hydrobiologica, 32, 214–224.

    Article  CAS  Google Scholar 

  • Annachhatre, A. R., & Gheewala, S. H. (1996). Biodegradation of chlorinated phenolic compounds. Biotechnology Advances, 14, 35–56.

    Article  CAS  Google Scholar 

  • ATSDR (2001). Toxicological profile for pentachlorophenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service (269 pp.).

    Google Scholar 

  • Brady, D., Stoll, A., & Duncan, J. R. (1994). Biosorption of heavy metal cations by non-viable yeast biomass. Environmental Technology, 15, 429–438.

    Article  CAS  Google Scholar 

  • Chan, S. M. (2002). Treatment of pentachlorophenol (PCP) by integrating biosorption and photocatalytic oxidation. M. Phil. thesis. Hong Kong, China: The Chinese University of Hong Kong (153 pp).

  • Chui, V. W. D., Mok, K. W., Ng, C. Y., Luong, B. P., & Ma, K. K. (1996). Removal and recovery of copper(II), chromium(III), and nickel(II) from solutions using crude shrimp chitin packed in small columns. Environmental International, 22, 463–468.

    Article  CAS  Google Scholar 

  • DiVincenzo, J. P., & Sparks, D. L. (1997). Slow sorption kinetics of pentachlorophenol on soil: concentration effects. Environmental Science and Technology, 31, 977–983.

    Article  CAS  Google Scholar 

  • DiVincenzo, J. P., & Sparks, D. L. (2001). Sorption of the neutral and charged forms of pentachlorophenol on soil: Evidence for different mechanisms. Archives of Environmental Contamination and Toxicology, 40, 445–450.

    Article  CAS  Google Scholar 

  • Environmental Health Criteria (1987). Pentachlorophenol. Geneva: World Health Organization (236 pp).

    Google Scholar 

  • Fukushima, M., & Tatsumi, K. (2001). Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of Iron(III), humic acid, hydrogen peroxide. Environmental Science and Technology, 35, 1771–1778.

    Article  CAS  Google Scholar 

  • Gao, J. P., Maguhn, J., Spitzauer, P., & Kettrup, A. (1997). Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Research, 32, 1662–1667.

    Article  Google Scholar 

  • Gautam, S. K., Sharma, R., Ahmad, A. H., & Thakur, I. S. (2003). Evaluation of pentachlorophenol-degrading potentiality of Pseudomonas sp. in a soil microcosm. World Journal of Microbiology and Biotechnology, 19, 73–78.

    Article  CAS  Google Scholar 

  • Ho, T. F. L., & Bolton, J. R. (1998). Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution. Water Research 32, 489–497.

    Article  CAS  Google Scholar 

  • Hong, P. K. A., & Zeng, Y. (2002). Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Research, 36, 4243–4254.

    Article  CAS  Google Scholar 

  • Hu, J. Y., Aizawa, T., Ookube, Y., Morita, T., & Magara, Y. (1998). Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon. Water Research, 32, 2593–2600.

    Article  CAS  Google Scholar 

  • Jacobsen, B. N., Arvin, E, & Reinders, M. (1996). Factors affecting sorption of pentachlorophenol to suspended microbial biomass. Water Research, 30, 13–20.

    Article  CAS  Google Scholar 

  • Liu, C., Honda, H., Ohshima, A., Shinkai, M., & Kobayashi, T. (2000). Development of chitosan-magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement. Journal of Bioscience and Bioengineering, 89, 420–425.

    Article  CAS  Google Scholar 

  • Mobed, M., & Chang, T. M. S. (1998). Adsorption of chitin derivatives onto liposomes: Optimization of adsorption conditions. Microencapsulation, 15, 595–607.

    Article  CAS  Google Scholar 

  • Mollah, A. H. &, Robinson, C. W. (1996). Pentachlorophenol adsorption and desorption characteristics of granular activated carbon-II. Kinetics. Water Research, 30, 2907–2913.

    Article  CAS  Google Scholar 

  • Proudfoot, A. (2003). Pentachlorophenol poisoning. Toxicological Reviews, 22, 3–11.

    Article  CAS  Google Scholar 

  • Šafaříková, M., Ptá čková, L., Kibriková, I., & Šafařík, I., (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere, 59, 831–835.

    Article  CAS  Google Scholar 

  • Tanjore, S., & Viraraghavan, T. (1994) Pentachlorophenol – Water pollution impacts and removal technologies. International Journal of Environmental Studies, 45, 155–164.

    CAS  Google Scholar 

  • Trung, T. S., Ng, C. H., & Stevens, W. F. (2003). Characterization of decrystallized chitosan and its application in biosorption of textile dyes. Biotechnology Letters, 25, 1185–1190.

    Article  CAS  Google Scholar 

  • Viraraghavan, T., & Slough, K. (1999). Sorption of pentachlorophenol on peat-bentonite mixtures. Chemosphere, 39,1487–1496.

    Article  CAS  Google Scholar 

  • Wang, J., Qian, Y., Nigel, H., & Ed, S. (2000a). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology, 75, 157–161.

    Article  CAS  Google Scholar 

  • Wang, L., Chua, H., Wong, P. K., Lo, W. H., Yu, P. H. F., & Zhao, Y. G. (2000b). An optimal magnetite immobilized Pseudomonas putida 5-x cell system for Cu2+ removal from industrial waste effluent. Water Science and Technology, 41(12), 241–246.

    CAS  Google Scholar 

  • Winterowd, J. G., & Sandford, P. A. (1995). Chitin and chitosan. In: Stephen, A. M. (Ed.), Food polysaccharides and their applications (p.441–462). New York: Marcel Dekker.

    Google Scholar 

  • Wong, P. K., & Fung, K. Y. (1997). Removal and recovery of nickel ion (Ni2+) from aqueous solution by magnetite-immobilized cells of Enterobacter sp. 4–2. Enzyme and Microbial Technology, 20, 116–121.

    Article  CAS  Google Scholar 

  • Zheng, S., Yang, Z., Jo, D. H., & Park, Y. H. (2004). Removal of chlorophenols from groundwater by chitosan sorption. Water Research, 38, 2315–2322.

    Article  CAS  Google Scholar 

  • Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38, 2643–2650.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by a research grant from the Research Grants Council, Hong Kong SAR Government and a grant from the Research Committee of The Chinese University of Hong Kong to P.K. Wong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, K.M., Ng, S., Chung, W.K. et al. Removal of Pentachlorophenol by Adsorption on Magnetite-immobilized Chitin. Water Air Soil Pollut 183, 355–365 (2007). https://doi.org/10.1007/s11270-007-9384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9384-2

Keywords

Navigation