Skip to main content
Log in

Phytoextraction of Heavy Metals by Eight Plant Species in the Field

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation is an in situ, cost-effective potential strategy for cleanup of sites contaminated with trace metals. Selection of plant materials is an important factor for successful field phytoremediation. A field experiment was carried out to evaluate the phytoextraction abilities of six high biomass plants (Vertiveria zizanioides, Dianthus chinensis, Rumex K-1 (Rumex upatientia × R. timschmicus), Rumex crispus, and two populations of Rumex acetosa) in comparison to metal hyperaccumulators (Viola baoshanensis, Sedum alfredii). The paddy fields used in the experiment were contaminated with Pb, Zn, and Cd. Our results indicated that V. baoshanensis accumulated 28 mg kg−1 Cd and S. alfredii accumulated 6,279 mg kg−1 Zn (dry weight) in shoots, with bioconcentration factors up to 4.8 and 6.3, respectively. The resulting total extractions of V. baoshanensis and S. alfredii were 0.17 kg ha−1 for Cd and 32.7 kg ha−1 for Zn, respectively, with one harvest without any treatment. The phytoextraction rates of V. baoshanensis and S. alfredii for Cd and Zn were 0.88 and 1.15%, respectively. Among the high biomass plants, R. crispus extracted Zn and Cd of 26.8 and 0.16 kg ha−1, respectively, with one harvest without any treatment, so it could be a candidate species for phytoextraction of Cd and Zn from soil. No plants were proved to have the ability to phytoextract Pb with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, S. E. (1989). Chemical analysis of ecological materials (2nd edn.). Oxford: Blackwell.

    Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & Q. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–197). Boca Raton, FL: Lewis.

    Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating crops. Resources Conservation and Recycling, 11, 41–49.

    Article  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., Malik, M., Angle, J. S., et al. (2000). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: Approaches and progress. In N. Terry, G. Banuelos, & J. Vangronsveld (Eds.), Phytoremediation of contaminated soil and water (pp. 129–158). , Boca Raton, Washington DC: Lewis.

    Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28.

    Article  CAS  Google Scholar 

  • Copper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709–1719.

    Article  Google Scholar 

  • Cui, Y. S., Wang, Q. R., Dong, Y. T., Li, H. F., & Christie, P. (2004). Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant Soil, 261, 181–188.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.

    Article  CAS  Google Scholar 

  • Escarré, J., Lefebre, C., Gruber, W., LeBlanc, M., Lepart, J., Riviere, Y., et al. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in Mediteranean area: Implications for phytoremediation. New Phytologist, 145, 429–437.

    Article  Google Scholar 

  • Ghosh, M. & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–371.

    Article  CAS  Google Scholar 

  • Hammer, D., & Keller, C. (2003). Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use and Management, 19, 144–149.

    Article  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. B., & Cunningham, S. D. (1997). Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805.

    Article  CAS  Google Scholar 

  • Hulina, N., & Dumija, L. (1995). Heavy metals in the weeds of Posavina. Poljoprivredna Znanstvena Smotra, 60, 95–103.

    Google Scholar 

  • Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., & Paulsen, G. M. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil, 257, 171–182.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Dunham, S. J., & Correll, R. L. (2000). Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In N. Terry, G. Banuelos, & J. Vangronsveld (Eds.), Phytoremediation of contaminated soil and water (pp. 109–128). Boca Raton, USA: Lewis.

    Google Scholar 

  • McGrath, S. P., Lombi, E., Gray, C. W., Caille, N., Dunham, S. J., & Zhao, F. J. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115–125.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Hopgood, M., Lesage, E., & Tack, F. M. G. (2005). Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 61, 561–572.

    Article  CAS  Google Scholar 

  • Mertens, J., Luyssaert, S., & Verheyen, K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution, 138, 1–4.

    Article  CAS  Google Scholar 

  • Nowack, B., Schulin, R., & Robinson, B. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology, 40, 5225–5232.

    Article  CAS  Google Scholar 

  • Page, A. L., Miller, R. H., & Keener, D. R. (1982). Methods of soil analysis. Part 2, Chemical and microbiological properties (2nd ed.), Agronomy No. 9. Madison, Wisconsin: American Society of Agronomy and Soil Science Society of America.

  • Robinson, B. H., Leblanc, M., Petit, D., Brooks, R. R., Kirkman, J. H., & Gregg, P. E. H. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil, 203, 47–56.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, I., et al. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

    Article  CAS  Google Scholar 

  • Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2001). Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International, 26, 389–394.

    Article  CAS  Google Scholar 

  • Solhi, M., Shareatmadari, H., & Hajabbasi, M. A. (2005). Lead and zinc extraction potential of two common crop plants, helianthus annuus and Brassica napus. Water Air and Soil Pollution, 167, 59–71.

    Article  CAS  Google Scholar 

  • Szabó, L., & Fodor, L. (2006). Uptake of microelements by crops grown on heavy metal-amended soil. Communications in Soil Science and Plant Analysis, 37, 2679–2689.

    Article  CAS  Google Scholar 

  • Turgut, C., Pepe, M. K., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154.

    Article  CAS  Google Scholar 

  • Vervaekea, P., Luyssaerta, S., Mertensa, J., Meersb, E., Tackb, F. M. G., & Lusta, N. (2003). Phytoremediation prospects of willow stands on contaminated sediment: A field trial. Environmental Pollution, 126, 275–282.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil, 249, 83–96.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37–43.

    Article  CAS  Google Scholar 

  • Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant Soil, 276, 153–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National ‘‘863’’ Project of China (no. 2001AA645010-3) and the National Natural Science Foundation of China (no. 40471117 and no. 30100024), and Fok Ying Tung Education Foundation (no. 94022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, P., Yang, Q.W., Wang, H.B. et al. Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Water Air Soil Pollut 184, 235–242 (2007). https://doi.org/10.1007/s11270-007-9412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9412-2

Keywords

Navigation