Skip to main content
Log in

Accumulation and Distribution of Heavy Metals in Scirpus americanus and Typha latifolia from an Artificial Lagoon in San Luis Potosí, México

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The concentrations of Pb, Cd, Cr, Mn and Fe were evaluated in leaves, stem and root of the Scirpus americanus and Typha latifolia aquatic macrophytes, which were collected from Tanque Tenorio, an artificial lagoon highly polluted by municipal and industrial wastewater. Some S. americanus and T. latifolia plants were collected from four different sites within Tanque Tenorio. The sites were chosen regarding their proximity with the main channel discharging wastewater into the lagoon. The results showed that S. americanus and T. latifolia have the ability to extract Pb, Cd, Cr, Mn and Fe from their water surroundings; on the whole, the roots presented higher concentrations of heavy metals than the stem and the leaves. The highest accumulation of heavy metals was observed in plants growing at the site near the channel entering the lagoon. S. americanus accumulated more Pb, Cr, Mn and Fe than T. latifolia; Cd concentrations were comparably the same in both species. This study provides information in relation to aquatic plants growing in polluted waters, which accumulate heavy metals. These findings are of interest pertaining to the removal processes for treating aquatic systems with heavy metal content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksoy, A., Demirezen, D., & Duman, F. (2005). Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water Air and Soil Pollution, 164, 241–255.

    Article  CAS  Google Scholar 

  • Alfaro de la Torre, M. C. (1997). Contenu des métaux Cu, Pb, Cd et Zn dans les larves de l’insecte aquatique Chaoborus (Diptera). Rapport interne INRS-Eau Université du Quebec CA.

  • Azcon-Bieto, J., & Talon, M. (1993). Fisiología y bioquímica vegetal pp. 537–553. McGraw-Hill: Editorial Interamericana.

    Google Scholar 

  • Bienfait, H. F. (1988). Mechanisms in Fe-efficiency reactions of higher plants. Journal of Plant Nutrition, 11, 605–629.

    Article  CAS  Google Scholar 

  • Breckle, C. W. (1991). Growth under heavy metals. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.) Plant roots: The hidden half (pp. 351–373). New York, NY: Marcel Dekker.

    Google Scholar 

  • Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia and Potamogeton pectinatus living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.

    Article  CAS  Google Scholar 

  • Godbold, D. L., & Hüttermann, A. (1985). Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environmental Pollution, 38, 375–381.

    CAS  Google Scholar 

  • Hozhina, E. I., Khramov, A. A., Gerasimov, P. A., & Kumarakov, A. A. (2001). Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. Journal of Geochemical Exploration, 74, 153–162.

    Article  CAS  Google Scholar 

  • Huerta-Díaz, M. A., Carignan, R., & Tessier, A. (1993). Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environmental Science and Technology, 27, 2367–2372.

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  • Lytle, C. M., Lytle, F. W., Yang, N., Quian, J. H., Hansen, D., Zayed, A., & Terry, N. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: Potential for in situ heavy metal detoxification. Environmental Science and Technology, 32, 3087–3093.

    Article  CAS  Google Scholar 

  • Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30.

    Google Scholar 

  • Memon, A. R., Aktoprakligül, D., Zdemur, A., & Verti, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.

    Google Scholar 

  • Montante-Montelongo, A. D. (1998). Estudio geoquímico de metales traza en una laguna artificial de aguas residuales. MS thesis, Universidad Autónoma de San Luis Potosí, S.L.P., México.

  • NOM-CCA-032-ECOL/1993 (Norma Oficial Mexicana). Diario Oficial de la Federación, 18 de Octubre de 1993.

  • Núñez-Curiel, N. E. (2005). Comportamiento geoquímico de Mn, Fe, Ni y Pb en agua y sedimentos de una laguna artificial de aguas residuales. Ph.D. thesis Universidad Autónoma de San Luís Potosí.

  • Parker, R. E. (1983). Introductory statistics for biology. London: Edward Arnold.

    Google Scholar 

  • Posadas-Ocampo, C., & Gascón-Orta, N. E. (2004). Determinación de metales pesados en sangre de especies de aves silvestres en el Tanque Tenorio. Reporte interno del proyecto SIGHO (2002020605). México: Universidad Autónoma de San Luis Potosí.

  • Reddy, K. R., & Debusk, W. F. (1987). Plant nutrient storage capabilities. In K. R. Reddy, & W. H. Smith (Eds.) Aquatic plants for water treatment and resource recovery (pp. 337–359). Florida: Magnologia Publishing Inc. Orlando.

    Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281, 87–98.

    Article  CAS  Google Scholar 

  • Sawidis, T., Chettri, M. K., Zachariadis, G. A., & Stratis, J. A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73–80.

    Article  CAS  Google Scholar 

  • Sawidis, T., Stratis, J., & Zachariadis, G. (1991). Distribution of heavy metals in sediments and aquatic plants of the river Pinios (Central, Greece). Science of the Total Environment, 102, 261–266.

    Article  CAS  Google Scholar 

  • Schecher, W. D., & McAvoy, D. C. (1994). MINEQL+: A chemical equilibrium program for personal computers. User’s manual. Version 3.0. Environ. Res. Software, Hallowell, ME.

  • Secretaria de Desarrollo Económico (SEDECO) (2006). Directorio de empresas que operan en las zonas y parques industriales de la ciudad de San Luís Potosí. San Luís Potosí, México. Available at: http://www.sdeslp.gob.mx/SNIIM/sniim.htm.

  • Secretaría de Gestión Ambiental (SEGAM) del Gobierno del Estado de San Luís Potosí. (1998). Available at: http://www.segam.gob.

  • Shewry, P. R., & Peterson, P. J. (1974). The uptake and transport of chromium by Barley seedlings (Hordeum vulgare L.). Planta (Berl), 132, 209–214.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). The Iowa State University Press.

  • Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32, 208–218.

    Article  CAS  Google Scholar 

  • Vargas-Olvera, M. C. (1999). Especiación de metales pesados en suelos regados con aguas residuales e industriales. MS thesis Universidad Autónoma de San Luís Potosí, México.

  • Yan, N. D., Mackie, G. L., & Dillon, P. J. (1990). Cadmium concentrations at crustacean zooplankton at acidified and non acidified Canadian Shield lakes. Environmental Science and Technology, 24, 1367–1377.

    Article  CAS  Google Scholar 

  • Zayed, A., Suvarnalatha, G., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support from Sistema de Investigación Miguel Hidalgo (SIHGO) no.2002020605. CCA was awarded a graduate fellowship from the Consejo Nacional de Ciencia y Tecnología (CONACYT) no.173383 and the SIHGO. AJAC was also granted with a fellowship from the SIGHO. We wish to express our gratitude to Secretaría de Ecología y Gestión Ambiental (SEGAM) and M.C. Joel Milán Navarro (Universidad Autónoma de San Luís Potosí) for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Fernando García-De La Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carranza-Álvarez, C., Alonso-Castro, A.J., Alfaro-De La Torre, M.C. et al. Accumulation and Distribution of Heavy Metals in Scirpus americanus and Typha latifolia from an Artificial Lagoon in San Luis Potosí, México. Water Air Soil Pollut 188, 297–309 (2008). https://doi.org/10.1007/s11270-007-9545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9545-3

Keywords

Navigation