Skip to main content
Log in

Kinetic and Equilibrium Modeling for Cr(III) and Cr(VI) Removal from Aqueous Solutions by Citrus reticulata Waste Biomass

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The pulp left after the extraction of juice from Citrus reticulate (kinnow), is a waste material, which was used as a potential sorbent for Cr(III) and Cr(VI) in the present study. The effect of experimental parameters such as pH, biosorbent dosage, biosorbent particle size, initial metal concentrations, temperature, shaking speed and sorption time on the Cr removal is apparent from the obtained results. The Freundlich isotherm and pseudo second order kinetic models fitted well to the data of Cr(III) and Cr(VI) biosorption by Citrus reticulata waste biomass. Effect of several pretreatments such as gases, natural coagulant and many other chemicals on Cr(III) and Cr(VI) sorption capacity of Citrus reticulata waste biomass was first time analyzed in the present study. The metal sorption capacity of Citrus reticulata waste biomass after a specific pretreatment was not only related to the nature of chemical but also strongly dependent on the oxidation state of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmet, C., Semra, I., Cansu, F., & Figen, C. (2005). Pb+2 biosorption by pretreated fungal biomass. Turkish Journal of Biology, 29, 23–28.

    Google Scholar 

  • Akhtar, M. N., Sivarama, K. S., & Maruthi, P. M. (1996). Mechanism of metal ion biosorption by fungal biomass. Biometal, 9(1), 21–28.

    Google Scholar 

  • Aksu, Z. (2001). Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: Effect of temperature. Separation and Purification Technology, 21, 285–294.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Kutsal, T. A. (1991). A bioseparation process for removing Pb(II) ions from wastewater by using C. vulgaris. Journal of Chemical Technology and Biotechnology, 52(1), 108–118.

    Google Scholar 

  • Bai, S. R., & Abraham, T. E. (2001). Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresource Technology, 79, 73–104.

    Article  Google Scholar 

  • Barrera, H., Nunez, F. U., Bilyeu, B., & Diaz, C. B. (2006). Removal of chromium and toxic ions presents in mine drainage by Ectodermis of Opuntia. Journal of Hazardous Materials, 136, 846–853.

    Article  CAS  Google Scholar 

  • Benguella, B., & Benaissa, H. (2002). Cadmium removal from aqueous solution by chitin: Kinetic and equilibrium studies. Water Research, 36(10), 2463–2474.

    Article  CAS  Google Scholar 

  • Beveridge, T. J., & Murray, R. G. E. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141(2), 876–887.

    CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sharma, A. (2004). Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Journal of Hazardous Materials, 113, 97–109.

    Article  CAS  Google Scholar 

  • Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42, 547–553.

    Article  CAS  Google Scholar 

  • Bishnoi, N. R., & Garima, G. A. (2004). Biosorption of copper from aqueous solution using algal biomass. Journal of Scientific and Industrial Research, 63, 813–816.

    CAS  Google Scholar 

  • Bishnoi, N. R., Kumar, R., Kumar, S., & Rani, S. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. Journal of Hazardous Materials, 145, 142–147.

    Article  CAS  Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., & Smith, E. D. (2003). Removal of Cr(VI) from wastewater using a new composite Chitosan biosorbent. Environmental Science & Technology, 37(19), 4449–4456.

    Article  CAS  Google Scholar 

  • Brierley, J. A., Brierley, C. L., Decker, R. F., & Goyack, G. M. (1985). European patent application No. 85112810, Publication No. 0 181 497.

  • Chand, S., Agarwal, V. K., & Kumar, P. (1994). Removal of hexavalent Cr from wastewater by adsorption. Indian Journal of Environmental Health, 36, 151–158.

    CAS  Google Scholar 

  • Chen, J. P., & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Industrial & Engineering Chemistry Research, 44, 9931–9942.

    Article  CAS  Google Scholar 

  • Cheng, M. H., Patterson, J. W., & Minear, R. E. (1975). Heavy metal uptake by activated sludge. Journal Water Pollution Control Federation, 47, 362–376.

    CAS  Google Scholar 

  • Cohen-Shoel, N., Ilzycer, D., Gilath, I., & Tel-Or, E. (2002). The involvement of pectin in Sr2+ biosorption by Azolla. Water, Air and Soil Pollution, 135(1–4), 195–205.

    Article  CAS  Google Scholar 

  • Cordero, B., Loderio, P., Herrero, R., & de-Vicente, M. E. S. (2004). Biosorption of cadmium by Fucus spiralis. Environmental Chemistry, 1, 180–187.

    Article  CAS  Google Scholar 

  • Cossich, E. S., Tavares, C. R. G., & Ravagnani, T. M. K. (2002). Biosorption of Cr(III) by Sargassum sp. Biomass. E. Journal of Biotechnology, 5(2), 133–140.

    Google Scholar 

  • Deng, S., & Ting, Y. P. (2005). Characterization of PEI-modified biomass and biosorption of Cu (II), Pb (II) and Ni (II) . Water Research, 39(10), 2167–2177.

    Article  CAS  Google Scholar 

  • Deo, N., & Ali, M. (1992). Optimization of a new low cost adsorbent in removal of Cr(VI) from wastewater. Indian Journal of Environmental Protection, 12, 828–834.

    CAS  Google Scholar 

  • Dow, J. M., & Rubery, P. H. (1977). Chemical fraction of the cell walls of mycelial and yeast like forms of Mucor rouxii: A comparative study of the polysaccharide and glycoprotein components. Journal of General Microbiology, 99, 29–41.

    Google Scholar 

  • Drake, L. R., Shan, L., Gary, R. D., & Jackson, J. P. (1996). Chemical modification and metal binding studies of Datura innoxia. Environmental Science & Technology, 30(1), 110–114.

    Article  CAS  Google Scholar 

  • Fourest, E., & Roux, J. (1992). Heavy metal biosorption by fungal mycelial by product: mechanism and influence of pH. Applied Microbiology and Biotechnology, 37, 399–403.

    Article  CAS  Google Scholar 

  • Fourest, E., & Volesky, B. (1996). Contribution of sulpho-nate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science & Technology, 30, 277–282.

    Article  CAS  Google Scholar 

  • Gaad, G. M. (1990). Fungi and yeasts for metal accumulation, in microbial mineral recovery. In H. L. Lehrlich, & C. L. Brierley (Eds.) Microbial mineral recovery. Chapter 11 (pp. 249–275). New York: McGraw-Hill.

    Google Scholar 

  • Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H., & Siegel, S. M. (1987). Removal of metal ions from aqueous solutions by Penicillum biomass: Kinetic and uptake parameters. Water, Air and Soil Pollution, 33, 359–371.

    Article  CAS  Google Scholar 

  • Gardea-Torresday, J. L., Cano-Aguilera, I., Tiemann, J. K., Webb, R., & Gutierrez-Corona, F. (1995). Copper binding by inactivated cells of Mucor rouxii. Proceeding of the 10th Annual Conference on Hazardous Waste Research (23rd–24th May, Manhattan, Kansas, USA), pp. 33–40.

  • Gupta, V. K., Shrivastava, A. K., & Jain, N. (2001). Biosorption of chromium(VI) from aqueous solution by green algae Spirogyra species. Water Research, 35, 4079–4085.

    Article  CAS  Google Scholar 

  • Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., & Ansari, T. M. (2007). Ni(II) biosorption by Cassia fistula (golden Shower) biomass. Journal of Hazardous Materials, 139, 345–355.

    Article  CAS  Google Scholar 

  • Huang, C., & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Research, 30, 1985–1990.

    Article  CAS  Google Scholar 

  • Jalali, R., Ghafourain, H., Asef, Y., Davarpanah, S. J., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92, 253–262.

    Article  CAS  Google Scholar 

  • Jianlong, W. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37(8), 847–850.

    Article  Google Scholar 

  • Jnr, M. H., & Spiff, A. I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass. Electronic Journal of Biotechnology, 8(2), 162–169.

    Article  CAS  Google Scholar 

  • Kapoor, A., & Viraraghvan, T. (1998). Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technology, 63, 109–113.

    Article  CAS  Google Scholar 

  • Kratochvil, D., Pimentel, P., & Volesky, B. (1998). Removal of trivalent and Cr(VI) by seaweed biomass. Environmental Science & Technology, 32, 2693–2698.

    Article  CAS  Google Scholar 

  • Lazaro, N., Sevilla, A. L., Morales, S., & Marques, A. M. (2003). Heavy metal biosorption by gellan gum beads. Water Research, 37, 2118–2126.

    Article  CAS  Google Scholar 

  • Loaec, M., Olier, R., & Guezennec, J. (1997). Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Water Research, 31(5), 1171–1179.

    Article  CAS  Google Scholar 

  • Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of Cr(VI) biosorption by Aeromonas cavicic. Colloid Surfaces A, 242, 93–104.

    Article  CAS  Google Scholar 

  • Marja, E., Gonzalez, R., Williams, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of Cadmium biosorption by dealginated seaweed waste. Environmental Science & Technology, 35, 3025–3030.

    Article  CAS  Google Scholar 

  • McGahren, W. J., Perkinson, G. A., Growich, J. A., Leese, R. A., & Ellestad, G. A. (1984). Chitosan by fermentation. Process Biochemistry, 19, 88–90.

    CAS  Google Scholar 

  • Mittleman, M. W., & Geesey, G. G. (1985). Copper binding characteristics of exopolymers from a freshwater sediment bacterium. Applied and Environmental Microbiology, 49, 846–851.

    Google Scholar 

  • Moreno-Castilla, C., Carrasco-Marin, F., Maldonado-Hodar, F. J., & Rivera-Utrilla, J. (1997). Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon, 36, 145–151.

    Article  Google Scholar 

  • Muraleedharan, T. R., & Venkobachar, C. (1990a). Mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823–831.

    Google Scholar 

  • Muraleedharan, T. R., & Venkobachar, C. (1990b). Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnology and Bioengineering, 35, 320–325.

    Article  CAS  Google Scholar 

  • Nomanbhay, S. F., & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 44–53.

    Article  Google Scholar 

  • Ozer, A., & Ozer, D. (2003). Comparitive study of the biosorption of Pb (II), Ni (II) and Cr(VI) ions onto S. cerevisiae: Determination of biosorption heats. Journal of Hazardous Materials, 100, 219–229.

    Article  CAS  Google Scholar 

  • Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Deit, H. L., & Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 137, 1765–1772.

    Article  CAS  Google Scholar 

  • Park, D., Yun, Y. S., & Park, J. M. (2005). Studies on Cr(VI) biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere, 60(10), 1356–1364.

    Article  CAS  Google Scholar 

  • Quek, S. Y., Al-Duri, B., Wasel, D. A. J., & Forster, C. F. (1998a). Coir as a biosorbent of copper and lead. Process safety and Environmental Protection, 76, 50–54.

    Article  CAS  Google Scholar 

  • Quek, S. Y., Wasel, D. A. J., & Forster, C. F. (1998b). The use of sago waste for the sorption of lead and copper. Water SA, 24, 251–256.

    CAS  Google Scholar 

  • Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 44, 101–110.

    Article  CAS  Google Scholar 

  • Saravanane, R., Sundararajan, T., & Sivamurthyreddy, S. (2002). Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from wastewater. Indian Journal of Environmental Health, 44, 78–81.

    CAS  Google Scholar 

  • Schiewer, S., & Volesky, B. (2000). Biosorption process for heavy metal removal. In R. R. lovely (Ed.) Environmental microbe–metal interaction (pp. 329–362). Washington, DC: ASM Press.

    Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Cr(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.

    Article  CAS  Google Scholar 

  • Tsui, M. T. K., Cheung, K. C., Tam, N. F. Y., & Wong, M. H. (2006). A comparative study on metal sorption by brown seaweed. Chemosphere, 65, 51–57.

    Article  CAS  Google Scholar 

  • Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2002). Biosorption of chromium(Vl) from aqueous solutions by cone biomass of Pituis sylvestris. Bioresource technology, 85, 155–158.

    Article  CAS  Google Scholar 

  • Veglio, F., Esposito, A., & Reverberi, A. P. (2003). Standerdization of heavy metal biosorption tests: equilibrium and modeling study. Process biochemistry, 38, 953–961.

    Article  CAS  Google Scholar 

  • Volesky, B. (1990). Biosorption of heavy metals. Biotechnology progress, 11, 235–250.

    Article  Google Scholar 

  • Volesky B. (2003). Sorption and biosorption. BV-Sorbex Inc., St. Lambert, Quebec, Canada, p. 316.

  • Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environnement & Pollution, 125, 385–392.

    Article  CAS  Google Scholar 

  • Whistler, R., & Daniel, T. R. (1985). Carbohydrates. In O. R. Fennema (Ed.) Food chemistry (pp. 96–105). New York: Marcel Dekker.

    Google Scholar 

  • Yan, G., & Viraraghavan, T. (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA, 26(1), 119–124.

    CAS  Google Scholar 

  • Yun, Y. S., Park, D., Park, J. M., & Volesky, B. (2001). Biosorption of trivalent chromium on the brown seaweed biomass. Environmental Science & Technology, 35(21), 4353–4358.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors like to thank Prof. Dr. Munir Ahmad Shiekh (Chairperson, Department of chemistry, University of Agriculture, Pakistan) for his useful suggestions throughout the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haq Nawaz Bhatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubair, A., Bhatti, H.N., Hanif, M.A. et al. Kinetic and Equilibrium Modeling for Cr(III) and Cr(VI) Removal from Aqueous Solutions by Citrus reticulata Waste Biomass. Water Air Soil Pollut 191, 305–318 (2008). https://doi.org/10.1007/s11270-008-9626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9626-y

Keywords

Navigation