Skip to main content
Log in

Photodegradation of Carbamazepine, Ibuprofen, Ketoprofen and 17α-Ethinylestradiol in Fresh and Seawater

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Photodegradation of four pharmaceuticals (i.e. carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol) in aqueous media was studied using a solar light simulator (Xe lamp irradiation) and sunlight experiments. These experiments were carried out in river and seawater and compared to distilled water. The latter was used to evaluate the direct photodegradation pathways. Irradiation time was up to 400 min and 24 days for the solar light simulator and sunlight assays, respectively. Pharmaceutical photodegradation followed a first-order kinetics and their half-lives calculated in every aqueous matrix. Moreover, the sensitizing effect of DOC was evaluated by comparison with the kinetics obtained in distilled waters. Ketoprofen was rapidly transformed via direct photolysis in all the waters under both sunlight (t 1/2 = 2.4 min) and simulated solar light simulator test (t 1/2 = 0.54 min). Under xenon lamp radiation, ibuprofen and 17α-ethinylestradiol were photodegraded at moderate rate with half-lives from 1 to 5 h. Finally, carbamazepine had the lowest photodegradation rate (t 1/2 = 8–39 h) attributable to indirect photodegradation. Indeed, its elimination was strongly dependent on the DOC concentration present in solution. Finally, several ketoprofen photoproducts were identified and plotted against solar light simulator irradiation time. Accordingly, the photodegradation pathway of ketoprofen was postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319–1330. doi:10.1016/S0045-6535(02)00769-5.

    Article  CAS  Google Scholar 

  • Blough, N. V., & Sulzberger, B. (2003). Impact of photochemical processes in the hydrosphere. Aquatic Sciences, 65, 317–319. doi:10.1007/s00027-003-0003-z.

    CAS  Google Scholar 

  • Buser, H.-R., & Müller, M. D. (1998). Occurrence of pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environmental Science & Technology, 32, 188–192. doi:10.1021/es9705811.

    Article  CAS  Google Scholar 

  • Daugthon, C. G., & Jones-Lep, T. (2001). Pharmaceuticals and personal care products in environment: Scientific and regulatory issues. Washington, DC: American Chemical Society.

    Google Scholar 

  • Daugthon, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agent of subtable change? Environmental Health Perspectives, 107, 907–938. doi:10.2307/3434573.

    Article  Google Scholar 

  • Doll, T. E., & Frimmel, F. H. (2003). Fate of pharmaceuticals—Photodegradation by simulated solar UV-light. Chemosphere, 52, 1757–1769. doi:10.1016/S0045-6535(03)00446-6.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology (Amsterdam), 266, 175–189. doi:10.1016/S0022-1694(02)00165-8.

    Article  CAS  Google Scholar 

  • Huertas, E., Folch, M., Salgot, M., Gonzalvo, I., & Passarell, C. (2006). Constructed wetlands effluent for streamflow augmentation in the Besos River (Spain). Desalination, 188, 141–147. doi:10.1016/j.desal.2005.04.111.

    Article  CAS  Google Scholar 

  • Lam, M. W., & Mabury, S. A. (2005). Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences, 67, 177–188. doi:10.1007/s00027-004-0768-8.

    Article  CAS  Google Scholar 

  • Lin, A., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry, 24, 1303–1309. doi:10.1897/04-236R.1.

    Article  CAS  Google Scholar 

  • Martinez, L. J., & Scaiano, J. C. (1997). Transient intermediates in the laser flash photolysis of ketoprofen in aqueous solutions: Unusual photochemistry for the benzophenone chromophore. Journal of the American Chemical Society, 119, 11066–11070. doi:10.1021/ja970818t.

    Article  CAS  Google Scholar 

  • Matamoros, V., & Bayona, J. M. (2006). Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environmental Science & Technology, 40, 5811–5816. doi:10.1021/es0607741.

    Article  CAS  Google Scholar 

  • Matamoros, V., García, J., & Bayona, J. M. (2005). Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: A pilot-scale study. Environmental Science & Technology, 39, 5449–5454. doi:10.1021/es050022r.

    Article  CAS  Google Scholar 

  • Matamoros, V., García, J., & Bayona, J. M. (2008). Organic micropollutant removal in full-scale surface flow constructed wetland fed with secondary effluent. Water Research, 42, 653–660. doi:10.1016/j.watres.2007.08.016.

    Article  CAS  Google Scholar 

  • Nakajima, A., Tahara, M., Yoshimura, Y., & Nakazawa, H. (2005). Determination of free radicals generated from light exposed ketoprofen. Journal of Photochemistry and Photobiology A, 174, 89–97. doi:10.1016/j.jphotochem.2005.03.015.

    Article  CAS  Google Scholar 

  • Packer, J. L., Werner, J. J., Latch, D. E., McNeill, K., & Arnold, W. A. (2003). Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences, 65, 342–351. doi:10.1007/s00027-003-0671-8.

    Article  CAS  Google Scholar 

  • Pietta, P., Manera, E., & Ceva, P. (1987). High-performance liquid chromatographic determination of ketoprofen degradation products. Journal of Chromatography A, 390, 454–457. doi:10.1016/S0021-9673(01)94399-7.

    Article  CAS  Google Scholar 

  • Prat, N., & Ibáñez, C. (2003). Avaluació crítica del Pla Hidrològic Nacional i proposta per a una gestió sostenible de l’aigua del baix Ebre. Barcelona, Institut d’Estudis Catalans. Secció de Ciències Biològiques.

  • Sedlak, D. L., Gray, J. L., & Pinkston, K. E. (2000). Understanding micro contaminants in recycled water. Environmental Science & Technology, 34, 509A–512A. doi:10.1021/es990024+.

    Article  Google Scholar 

  • Ternes, A. T., Joss, A., & Siegrist, H. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science & Technology, 38, 393A–398A.

    Article  Google Scholar 

  • Zeep, R. G., & Cline, D. M. (1977). Rates of the direct photolysis in aquatic environment. Environmental Science & Technology, 11, 359–366. doi:10.1021/es60127a013.

    Article  Google Scholar 

  • Zika, R., Robert, G., & Fisher, A. (1989). Sunlight-induced photochemistry of humic substances in natural waters: Major reactive species. Aquatic humic substances pp. 333–361. Washington, DC: American Chemical Society.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Education through the CONTWET (CTM2005-06457-CO5-04/TECNO) and CGL2005-02846/BOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Bayona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matamoros, V., Duhec, A., Albaigés, J. et al. Photodegradation of Carbamazepine, Ibuprofen, Ketoprofen and 17α-Ethinylestradiol in Fresh and Seawater. Water Air Soil Pollut 196, 161–168 (2009). https://doi.org/10.1007/s11270-008-9765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9765-1

Keywords

Navigation