Skip to main content

Advertisement

Log in

Stable Isotopes in Sedimentary Organic Matter from Lake Dianchi and their Indication of Eutrophication History

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Sediment cores were collected from the central and northern parts of Lake Dianchi, a large and shallow eutrophic lake situated in southwest China. Total organic carbon, total nitrogen (TN), and total phosphorus (TP) as well as the δ13C and δ15N were analyzed in the sediment cores. Age model of the sediment cores were established according to 137Cs geochronology, which reveals that the sedimentary record covers a period of the last 50 years. During that time, Dianchi had been undergoing a distinct conversion from oligotrophic to eutrophic, as a result of increasing nutrient loadings. The two cores displayed similar increases for values of TN and δ15N, and the variations of the both parameters matched well with that of TP, which presumably suggested that δ15N is a reliable proxy for anthropogenic nutrient input. Also, dynamics of δ15N and TP showed that anthropogenic nutrients input seemed to start in the 1970s. The upward elevation of δ15N might be ascribed to the increasing input of isotopically heavier dissolved inorganic nitrogen and the accelerated denitrification process when the lake water was oxygen-depleted. The less variation of δ15N in the uppermost several centimeters of both cores were probably the result of pollution controls carried out by the local government in the recent decade. The upward increasing of δ13C in the two cores seemed to be induced by the enhanced productivity since 1980, which was in accordance with limnological observation. Therefore, δ13C values were believed to be an effective proxy for reconstructing the history of eutrophication in Lake Dianchi. In addition, this study also suggested that carbon and nitrogen isotopes are applicable to large, shallow lakes in interpreting the past environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., et al. (1999). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Research. Part I, Oceanographic Research Papers, 46, 655–679. doi:10.1016/S0967-0637(98)00084-3.

    Article  CAS  Google Scholar 

  • Ellegaard, M., Clarke, A. L., Reuss, N., Drew, S., Weckström, K., Juggins, S., et al. (2006). Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science, 68, 567–578. doi:10.1016/j.ecss.2006.03.013.

    Article  Google Scholar 

  • Fogel, M. L., & Cifuentes, L. A. (1993). Isotope fractionation during primary production. In M. H. Engel, & S. A. Macko (Eds.), Organic geochemistry (pp. 73–98). New York: Plenum.

    Google Scholar 

  • Francois, R., Altabet, M. A., & Burckle, L. H. (1992). Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanography, 7, 589–606. doi:10.1029/92PA01573.

    Article  Google Scholar 

  • Freudenthal, T., Wagner, T., Wenzhöfer, F., Zabel, M., & Wefer, G. (2001). Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta, 65(11), 1795–1808. doi:10.1016/S0016-7037(01)00554-3.

    Article  CAS  Google Scholar 

  • Freyer, H. D., & Aly, A. I. (1974). Nitrogen-15 variations in fertilizer nitrogen. Journal of Environmental Quality, 3, 405–406.

    CAS  Google Scholar 

  • Gao, L., Yang, H., Zhou, J., & Lu, J. (2004). Lake sediments from Dianchi Lake: A phosphorus sink or source. Pedosphere, 14(4), 483–490.

    CAS  Google Scholar 

  • Gao, L., Zhou, J., Yang, H., & Chen, J. (2005). Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi Lake. Environmental Geology, 48, 835–844. doi:10.1007/s00254-005-0005-3.

    Article  CAS  Google Scholar 

  • Gray, A. V., & Li, W. (1999). Case study on water quality modelling of Dianchi Lake, Yunnan province, South West China. Water Science and Technology, 40(2), 35–43. doi:10.1016/S0273-1223(99)00428-X.

    Article  CAS  Google Scholar 

  • Hayes, J. M. (1993). Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology, 113, 111–125. doi:10.1016/0025-3227(93)90153-M.

    Article  CAS  Google Scholar 

  • Heaton, T. H. E. (1986). Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review. Chemical Geology, 59, 87–102. doi:10.1016/0009-2541(86)90046-X.

    Article  CAS  Google Scholar 

  • Hodell, D. A., & Schelske, C. L. (1998). Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography, 43(2), 200–214.

    CAS  Google Scholar 

  • Hu, J., Liu, Y., & Liu, J. (2006). The comparison of phosphorus pools from the sediment in two bays of lake Dianchi for cyanobacterial bloom assessment. Environmental Monitoring and Assessment, 121, 1–14. doi:10.1007/s10661-005-9036-1.

    Article  CAS  Google Scholar 

  • Jin, X. C. (2003). Experience and Lessons Learned Brief for Lake Dianchi. http://www.worldlakes.org/uploads/Dianchi_12.26.03.pdf

  • Lehmann, M. F., Bernasconi, S. M., Barbieri, A., & Mckenzie, J. A. (2002). Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66(20), 3573–3584. doi:10.1016/S0016-7037(02)00968-7.

    Article  CAS  Google Scholar 

  • Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831. doi:10.1016/j.quascirev.2003.06.012.

    Article  Google Scholar 

  • Lü, J., Yang, H., Gao, L., & Yu, T. (2005). Spatial variation of P and N in water and sediments of Dianchi Lake, China. Pedosphere, 15(1), 78–83.

    Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5/6), 213–250. doi:10.1016/S0146-6380(97)00049-1.

    Article  CAS  Google Scholar 

  • Minigawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48, 1135–1140. doi:10.1016/0016-7037(84)90204-7.

    Article  Google Scholar 

  • Müller, A., & Voss, M. (1999). The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter—sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 17–32. doi:10.1016/S0031-0182(98)00095-9.

    Article  Google Scholar 

  • Muzuka, A. N. N., Ryner, M., & Holmgren, K. (2004). 12,000-Year, preliminary results of the stable nitrogen and carbon isotope record from the Empakai Crater lake sediments, Northern Tanzania. Journal of African Earth Sciences, 40, 293–303. doi:10.1016/j.jafrearsci.2004.12.005.

    Article  CAS  Google Scholar 

  • Neumann, T., Stogbauer, A., Walpersdorf, E., Stuben, D., & Kunzendorf, H. (2002). Stable isotopes in recent sediments of Lake Arendsee, NE Germany: Response to eutrophication and remediation measures. Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 75–90. doi:10.1016/S0031-0182(01)00403-5.

    Article  Google Scholar 

  • Ogrinc, N., Fontolan, G., Faganeli, J., & Covelli, S. (2005). Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): Indicators of sources and preservation. Marine Chemistry, 95, 163–181. doi:10.1016/j.marchem.2004.09.003.

    Article  CAS  Google Scholar 

  • O’Reilly, C. M., Dettman, D. L., & Cohen, A. S. (2005). Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: VI. Geochemical indicators. Journal of Paleolimnology, 34, 85–91. doi:10.1007/s10933-005-2399-z.

    Article  Google Scholar 

  • Peters, K. E., Sweeney, R. E., & Kaplan, I. R. (1978). Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnology and Oceanography, 23, 598–604.

    CAS  Google Scholar 

  • Schelske, C. L., & Hodell, D. A. (1991). Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnology and Oceanography, 36(5), 961–975.

    Article  CAS  Google Scholar 

  • Schelske, C. L., & Hodell, D. A. (1995). Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnology and Oceanography, 40(5), 918–929.

    Article  CAS  Google Scholar 

  • Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C., & Gaillard, J. F. (1999). The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography, 14, 118–134. doi:10.1029/1998PA900018.

    Article  Google Scholar 

  • Struck, U., Emeis, K. -C., Voss, M., Christiansen, C., & Kunzendorf, H. (2000). Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Marine Geology, 164, 157–171. doi:10.1016/S0025-3227(99)00135-8.

    Article  CAS  Google Scholar 

  • Sweeney, R. E., & Kaplan, I. R. (1980). Natural abundance of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Marine Chemistry, 9, 81–94. doi:10.1016/0304-4203(80)90062-6.

    Article  CAS  Google Scholar 

  • Verburg, P. (2007). The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. Journal of Paleolimnology, 37, 591–602. doi:10.1007/s10933-006-9056-z.

    Article  Google Scholar 

  • Voss, M., Larsen, B., Leivuori, M., & Vallius, H. (2000). Stable isotope signals of eutrophication in Baltic Sea sediments. Journal of Marine Systems, 25, 287–298. doi:10.1016/S0924-7963(00)00022-1.

    Article  Google Scholar 

  • Voss, M., & Struck, U. (1997). Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic Sea). Marine Chemistry, 59, 35–49.

    Article  CAS  Google Scholar 

  • Wan, G., Bai, Z., Liu, T., et al. (2001). The differentials of fallout 137Cs between western Yunan and central Guizhou: Implication for the barrier effect of Qinghai–Xizhang uplift on global atmospheric pollutants in Yunan–Guizhou plateau. Quaternary Sciences, 21(5), 407–415.

    Google Scholar 

  • Wang, Y. C., Huang, R. G., & Wan, G. J. (1998). A newly developed sampler for collecting samples near lacustrine sediments–water interface. Geology-Geochemistry, 1, 94–96 (in Chinese with English abstract).

    Google Scholar 

  • Whitmore, T. J., Brenner, M., Jiang, Z., Curtis, J. H., Moore, A. M., Engstrom, D. R., et al. (1997). Water quality and sediment geochemistry in lakes of Yunnan Province, southern China. Environmental Geology, 32(1), 45–55.

    Article  CAS  Google Scholar 

  • Xu, H., Ai, L., Tan, L., & An, Z. (2006). Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chemical Geology, 235, 262–275.

    Article  CAS  Google Scholar 

  • Yamamuro, M., & Kanai, Y. (2005). A 200-year record of natural and anthropogenic changes in water quality from coastal lagoon sediments of Lake Shinji, Japan. Chemical Geology, 218, 51–61.

    Article  CAS  Google Scholar 

  • Yu, G. Y., Liu, Y. D., Qiu, C. Q., & Xu, X. Q. (2000). Macrophyte succession in Dianchi Lake and relations with the environment. Journal of Lake Science, 12(1), 73–80 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, Y., Peng, B. Z., Chen, J., & Lu, J. J. (2005). Evaluation of sediment accumulation in Dianchi Lake, using 137Cs dating. Acta Geographica Sinica, 60(1), 71–78 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Lei Gao for his careful assistance in improving the quality of language in this paper. This research was funded by the National Basic Research Program of China (973 Program) (No. 2006CB403205), the National Natural Science Foundation of China (No. 40571158), Shanghai Rising-Star Program (08QA14029), and the Shanghai Education Committee and the Shanghai Leading Academic Disciplines (T0105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuShun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A

People’s Republic of China: Water Quality Classification System (GB3838-88) (DOC 25.5 KB).

Appendix B

Hydrological and geochemical features of Lake Dianchi (data from http://www.lake.csdb.cn/) (DOC 36.5 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liu, C., Wu, M. et al. Stable Isotopes in Sedimentary Organic Matter from Lake Dianchi and their Indication of Eutrophication History. Water Air Soil Pollut 199, 159–170 (2009). https://doi.org/10.1007/s11270-008-9868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9868-8

Keywords

Navigation