Skip to main content
Log in

As, Cd, Cu, Mn, Pb, and Zn Contents in Sediments and Mollusks (Hexaplex trunculus and Tapes decussatus) from Coastal Zones of a Mediterranean Lagoon (Mar Menor, SE Spain) Affected by Mining Wastes

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Individuals of Hexaplex trunculus, Tapes decussatus, and associated sediments were collected from 16 coastal sampling plots of the Mar Menor lagoon (SE Spain), and the metal and As concentrations were determined. The sediments had maximum values (in milligrams per kilogram dry weight [d.w.]) of 7,132 for Zn; 6,975 for Pb; 5,039 for Mn; 501 for As; 74 for Cu; and 9.1 for Cd. Specimens of H. trunculus could be collected from all the sampling plots, and it was found that concentrations of Zn (between 883 and 3,130 mg kg−1 d.w.), Pb (between 0.09 and 222 mg kg−1 d.w.), Mn (between 7.6 and 17.7 mg kg−1 d.w.), As (between 144 and 418 mg kg−1 d.w.), and Cd (between undetectable and 8.4 mg kg−1 d.w.) in soft tissues significantly increased when concentrations in sediments increased. H. trunculus apparently regulated Cu assimilation (concentrations between 17.7 and 47.2 mg kg−1 d.w.) in its soft tissues. T. decussatus was very scarce or even absent from sites with higher metal and As contents in the sediments. Hence, H. trunculus could be used as a bioindicator of metals and As pollution, but not T. decussatus. Based on our results, a human health risk exists because the species analyzed are collected from the studied zone and so are consumed by the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez-Rogel, J., Ramos, M. J., Delgado, M. J., & Arnaldos, R. (2004). Metals in soils and above-ground biomass of plants from a salt marsh polluted by mine wastes in the coast of the Mar Menor lagoon, SE Spain. Fresenius Environmental Bulletin, 13, 274–278.

    Google Scholar 

  • Amiard-Triquet, C., Amiard, J. C., Ferrand, R., Andersen, A. C., & Dubois, M. P. (1986). Disturbance of a met-enkephalin-like hormone in the hepatopancreas of crabs contaminated by metals. Ecotoxicology and Environmental Safety, 11, 198–209.

    Article  CAS  Google Scholar 

  • Anderson, H. (1958). The gastropod genus Bembicium philippi. Australian Journal of Marine and Freshwater Research, 9, 546–572. doi:10.1071/MF9580546.

    Article  Google Scholar 

  • Auernheimer, C., Llavador, F., & Pina, J. A. (1984). Chemical minority elements in bivalve shells. A natural model (Mar Menor, Spain). Archives Des Sciences Genève, 37, 317–331.

    CAS  Google Scholar 

  • Auernheimer, C., Chinchón, S., & Pina, J. A. (1996). Lead pollution in bivalve shells. Mar Menor, Spain. Archives Des Sciences Genève, 49, 87–98.

    CAS  Google Scholar 

  • Beaudoin, A. (2003). A comparison of two methods for estimating the organic content of sediments. Journal of Paleolimnology, 29, 387–390. doi:10.1023/A:1023972116573.

    Article  Google Scholar 

  • Borak, J., & Hosgood, H. D. (2007). Seafood arsenic: Implications for human risk assessment. Regulatory Toxicology and Pharmacology, 47, 204–212.

    Article  CAS  Google Scholar 

  • Bragigand, V., Berthet, B., Amiard, J. C., & Rainbow, P. S. (2004). Estimates of trace metal bioavailability to humans ingesting contaminated oysters. Food and Chemical Toxicology, 42, 1893–1902. doi:10.1016/j.fct.2004.07.011.

    Article  CAS  Google Scholar 

  • Bryan, G. W., Langston, W. J., Hummerstone, L. G., Burt, G. R., & Ho, Y. B. (1983). An assessment of the gastropod Littorina littorea as an indicator of heavy-metal contamination in UK estuaries. Journal of the Marine Biological Association of the United Kingdom, 63, 327–345.

    Article  CAS  Google Scholar 

  • Catsiki, A. V., & Arnous, A. (1987). Etude de la Variabilité des Teneurs en Hg, Cu, Zn et Pb de Trois Espèces de Mollusques de l’Étang du Berre (France). Marine Environmental Research, 21, 175–187. doi:10.1016/0141-1136(87)90064-X.

    Article  CAS  Google Scholar 

  • Calvín-Calvo, J. C., Belmonte, A., Franco-Navarro, I., Martínez-Inglés, A. M., Marín, A., Ruíz, J. M., et al. (1999). El litoral sumergido de la Región de Murcia. Cartografía bionómica y valores ambientales. Dirección General del Medio Natural. Región de Murcia: Consejería de Medio Ambiente, Agricultura y Agua.

    Google Scholar 

  • Chiu, S. T., Lam, F. S., Tze, W. L., Chau, C. W., & Ye, D. Y. (2000). Trace metals in mussel from mariculture zones, Hong Kong. Chemosphere, 41, 101–108. doi:10.1016/S0045-6535(99)00395-1.

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission. (2007). Joint FAO/WHO Food Standards Programme, Codex Committee on Contaminants in Foods, 1st Session. Working document for information and use in discussions related to contaminants and toxins of the GSCTF. CX/CF 07/1/6. Beijing, China. Retrieved from ftp://ftp.fao.org/Codex/cccf1/cf0106ae.pdf.

  • Conesa, H. M. (2005). Restauración/estabilización de suelos contaminados por metales pesados como consecuencia de actividades mineras en la zona de Cartagena y La Unión. Ph.D. Thesis, Universidad Politécnica de Cartagena, España.

  • Conesa, H., & Jiménez-Cárceles, F. J. (2007). The Mar Menor lagoon (SE Spain): a singular natural ecosystem threatened by human activities. Marine Pollution Bulletin, 54, 839–849. doi:10.1016/j.marpolbul.2007.05.007.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, A., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). The Science of the Total Environment, 366, 1–11. doi:10.1016/j.scitotenv.2005.12.008.

    Article  CAS  Google Scholar 

  • Conti, M. E., & Cecchetti, G. (2003). A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research, 93, 99–112. doi:10.1016/S0013-9351(03)00012-4.

    Article  CAS  Google Scholar 

  • Cravo, A., Bebianno, M. J., & Foster, P. (2004). Partitioning of trace metals between soft tissues and shells of Patella aspera. Environment International, 30, 87–98. doi:10.1016/S0160-4120(03)00154-5.

    Article  CAS  Google Scholar 

  • Cubbada, F., Conti, M. E., & Campanella, L. (2001). Size-dependent concentrations of trace metals in four Mediterranean gastropods. Chemosphere, 45, 561–569. doi:10.1016/S0045-6535(01)00013-3.

    Article  Google Scholar 

  • Damkröger, G., Grote, M., & Janben, E. (1997). Comparison of sample digestion procedures for the determination of arsenic in certified marine samples using the FI-HG-AAS-technique. Fresenius’ Journal of Analytical Chemistry, 357, 817–821. doi:10.1007/s002160050255.

    Article  Google Scholar 

  • De Leon, A. R., Guerrero, J., & Faraco, F. (1982). Evolution of the pollution of the coastal lagoon of Mar Menor. VI Journées Étud. Pollutions. C.I.E.S.M., Cannes.

  • El-Sikaily, A., Khaled, A., & El Nemr, A. (2004). Heavy metals monitoring using bivalves from Mediterranean Sea and Red Sea. Environmental Monitoring and Assessment, 98, 41–58. doi:10.1023/B:EMAS.0000038178.98985.5d.

    Article  CAS  Google Scholar 

  • European Communities (2001). Commission regulation (EC) no. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, Brussels, L77, pp. 1–13.

  • European Communities (2002). Commission regulation (EC) no. 221/2002 of 6 February modifying Commission regulation (EC) no. 466/2001. Official Journal of the European Communities, Brussels, L37, pp. 4–6.

  • Farag, A. M., Woodward, D. F., Goldstein, J. N., Brumbaugh, W., & Meyer, J. S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho. Archives of Environmental Contamination and Toxicology, 34, 119–127. doi:10.1007/s002449900295.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., Goessler, W., Panutrakul, S., & Irgolic, K. J. (1998). A novel arsenic containing riboside (arsenosugar) in three species of gastropod. The Science of the Total Environment, 221, 139–148. doi:10.1016/S0048-9697(98)00272-1.

    Article  CAS  Google Scholar 

  • Gilabert, J. (2001). Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: the Mar Menor. Journal of Plankton Research, 23, 207–217. doi:10.1093/plankt/23.2.207.

    Article  Google Scholar 

  • Goessler, W., Maher, W., Irgolic, K. J., Kuehnelt, D., Schlagenhaufen, C., & Kaise, T. (1997). Conversion of arsenic compunds in a marine food chain. Fresenius Journal of Analytical Chemistry, 359, 434–437.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110. doi:10.1023/A:1008119611481.

    Article  Google Scholar 

  • Huang, H., Wu, J. Y., & Wu, J. H. (2006). Heavy metal monitoring using bivalved shellfish from Zhejiang coastal waters, East China Sea. Environmental Monitoring and Assessment, 129, 315–320. doi:10.1007/s10661-006-9364-9.

    Article  CAS  Google Scholar 

  • Jiménez-Cárceles, F. J., Egea, C., Rodríguez-Caparrós, A. B., Barbosa, O. A., Delgado, M. J., Ortiz, R., & Álvarez-Rogel, J. (2006). Contents of nitrogen, ammonium, phosphorus, pesticides and heavy metals, in a salt marsh in the coast of the Mar Menor lagoon (SE Spain). Fresenius Environmental Bulletin, 15, 370–378.

    Google Scholar 

  • Kaland, T., Andersen, T., & Hylland, K. (1993). Accumulation and subcellular distribution of metals in the marine gastropod Nassarius reticulatus L. In R. Dallinger, & P. S. Rainbow (Eds.), Ecotoxicology of metals in invertebrates (pp. 37–53). Boca Raton, FL: Lewis.

    Google Scholar 

  • Langston, W. J., & Spence, S. K. (1995). Biological factors involved in metal concentrations observed in aquatic organisms. In A. Tessier, & D. R. Turner (Eds.), Metal speciation and bioavailability (pp. 407–478). New York: Wiley.

    Google Scholar 

  • Lloret, J., Marin, A., Marin-Guirao, L., & Velasco, J. (2005). Changes in macrophytes distribution in a hypersaline coastal lagoon associated with the development of intensively irrigated agriculture. Ocean and Coastal Management, 48, 828–842. doi:10.1016/j.ocecoaman.2005.07.002.

    Article  Google Scholar 

  • Lobel, P. B., & Wright, D. A. (1982). Gonadal and nongonadal zinc concentrations in mussels. Marine Pollution Bulletin, 13, 320–323.

    Google Scholar 

  • Lobel, P. B., Mogie, P., Wright, D. A., & Wu, B. L. (1982). Metal accumulation in four molluscs. Marine Pollution Bulletin, 13, 170–174.

    Article  CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97. doi:10.1007/BF02472006.

    Article  Google Scholar 

  • Margalef, R. (1991). Ecología. Barcelona: Omega, S. A.

    Google Scholar 

  • Marín-Guirao, L. (2007). Aproximación ecotoxicológica a la contaminación por metales pesados en la laguna costera del Mar Menor. Ph.D. Thesis, Universidad de Murcia, Murcia, España. Retrieved from http://www.tesisenred.net/TESIS_UM/AVAILABLE/TDR-0529107-101746.

  • Marín-Guirao, L., Marín-Atucha, A., Lloret, J., Martínez-López, E., & García-Fernández, A. J. (2005a). Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure. Marine Environmental Research, 60, 317–337. doi:10.1016/j.marenvres.2004.11.002.

    Article  CAS  Google Scholar 

  • Marín-Guirao, L., César, A., Marín, A., Lloret, J., & Vita, R. (2005b). Establishing the ecological quality status of soft-bottom mining-impacted coastal water bodies in the scope of the Water Framework Directive. Marine Pollution Bulletin, 50, 374–387. doi:10.1016/j.marpolbul.2004.11.019.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2005). Biomonitoring of trace metals in a mine-polluted estuarine system (Spain). Chemosphere, 58, 1421–1430. doi:10.1016/j.chemosphere.2004.09.093.

    Article  CAS  Google Scholar 

  • Nott, J. A., & Nicolaidou, A. (1989). Metals in gastropods—metabolism and bioreduction. Marine Environmental Research, 28, 201–205. doi:10.1016/0141-1136(89)90225-0.

    Article  CAS  Google Scholar 

  • O’Connor, T. P., & Paul, J. F. (2000). Misfit between sediment toxicity and chemistry. Marine Pollution Bulletin, 40, 59–64. doi:10.1016/S0025-326X(99)00153-8.

    Article  Google Scholar 

  • Ochsenkühn-Petropulu, M., Varsamis, J., & Parissakis, G. (1997). Speciation of arsenobetaine in marine organisms using a selective leaching/digestion procedure and hydride generation atomic absorption spectrometry. Analytica Chimica Acta, 337, 323–327. doi:10.1016/S0003-2670(96)00411-4.

    Article  Google Scholar 

  • Oén, I. S., Fernández, J. C., & Manteca, J. I. (1975). The lead–zinc and associated ores of La Unión–Sierra de Cartagena, Spain. Economic Geology and the Bulletin of the Society of Economic Geologists, 70, 1259–1278.

    Google Scholar 

  • Orescanin, V., Lovrencic, I., Mikelic, L., Barisic, D., Matasin, Z., Lulic, S., et al. (2006). Biomonitoring of heavy metals and arsenic on the east coast of the Middle Adriatic Sea using Mytilus galloprovincialis. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 245, 495–500. doi:10.1016/j.nimb.2005.11.050.

    Article  CAS  Google Scholar 

  • Paulson, A. J., Sharack, B., & Zdanowicz, V. (2003). Trace metals in ribbed mussels from Arthur Kill, New York/New Jersey, USA. Marine Pollution Bulletin, 46, 139–152. doi:10.1016/S0025-326X(02)00312-0.

    Article  CAS  Google Scholar 

  • Peharda, M., & Morton, B. (2006). Experimental prey species preferences of Hexaplex trunculus (Gastropoda: Muricidae) and predator–prey interactions with the black mussel Mytilus galloprovincialis (Bivalvia: Mytilidae). Marine Biology (Berlin), 148, 1011–1019. doi:10.1007/s00227-005-0148-5.

    Article  Google Scholar 

  • Pérez-Ruzafa, A., Marcos, C., & Ros, J. D. (1991). Environmental and biological changes related to recent human activities in the Mar Menor (SE of Spain). Marine Pollution Bulletin, 23, 747–751. doi:10.1016/0025-326X(91)90774-M.

    Article  Google Scholar 

  • Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—a review. Environmental Pollution, 13, 281–311. doi:10.1016/0013-9327(77)90047-7.

    Article  CAS  Google Scholar 

  • Phillips, D. J. H. (1990). Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. In R. W. Furness, & P. S. Rainbow (Eds.), Heavy metals in the marine environment (pp. 81–99). Boca Raton, FL: CRC.

    Google Scholar 

  • Phillips, D. J. H. (1995). The chemistries and environmental fates of trace metals and organochlorines in aquatic ecosystems. Marine Pollution Bulletin, 31, 193–200. doi:10.1016/0025-326X(95)00194-R.

    Article  CAS  Google Scholar 

  • Prohaska, T., & Stingeder, G. (2005). Arsenic and arsenic species in environment and human nutrition. In R. Cornelis, J. Caruso, H. Crews, & K. Heumann (Eds.), Handbook of elemental speciation II—species in the environment, food, medicine and occupational health (pp. 69–85). Chichester, UK: Wiley.

    Chapter  Google Scholar 

  • Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192. doi:10.1016/0025-326X(95)00116-5.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Philips, D. J. H. (1993). Cosmopolitan bioindicators of trace metals. Marine Pollution Bulletin, 26, 593–601. doi:10.1016/0025-326X(93)90497-8.

    Article  CAS  Google Scholar 

  • Reinfelder, J. R., & Fisher, N. S. (1994). The assimilation of elements ingested by marine planktonic bivalve larvae. Limnology and Oceanography, 39, 12–20.

    Article  CAS  Google Scholar 

  • Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology, 18, 47–64. doi:10.1007/s00254-006-0303-4.

    Article  CAS  Google Scholar 

  • Rodríguez-Puente, C., Guerrero, J., García, I. M., & Jornet, A. (2001). Estudio piloto sobre niveles y efectos del tributilo de estaño (TBT) y metales pesados en el Mar Menor. Instituto Español de Oceanografía. España: Informe Interno de la Consejería de Agricultura, Agua y Medio Ambiente de la Región de Murcia.

    Google Scholar 

  • Roméo, M., Frasila, C., Gnassia-Barelli, M., Damiens, G., Micu, D., & Mustata, G. (2005). Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Research, 39, 596–604. doi:10.1016/j.watres.2004.09.026.

    Article  CAS  Google Scholar 

  • Roméo, M., Gharbi-Bouraoui, S., Gnassia-Barelli, M., Dellali, M., & Aïssa, P. (2006). Responses of Hexaplex (murex) trunculus to selected pollutants. The Science of the Total Environment, 359, 135–144. doi:10.1016/j.scitotenv.2005.09.071.

    Article  CAS  Google Scholar 

  • Sanchiz, C., García-Carrascosa, A. M., & Pastor, A. (2000). Heavy metal contents in soft-bottom marine macrophytes and sediments along the Mediterranean coast of Spain. Marine Ecology (Berlin), 21, 1–16. doi:10.1046/j.1439-0485.2000.00642.x.

    Article  CAS  Google Scholar 

  • Salas, F., Marcos, C., Pérez-Ruzafa, A., & Marques, J. C. (2005). Application of the exergy index as ecological indicator of organically enrichment areas in the Mar Menor lagoon (South-Eastern Spain). Energy, 30, 2505–2522. doi:10.1016/j.energy.2005.01.005.

    Article  Google Scholar 

  • Simonneau, J. (1973). Mar Menor: Evolution Sedimentologique et Geochimique recente du remplissage. Ph.D. Thesis, Université de Toulouse, France.

  • Soto, M., Ireland, M. P., & Marigómez, I. (1997). The contribution of metal/shell-weight index in target-tissues to metal body burden in sentinel marine molluscs. 1. Littorina littorea. The Science of the Total Environment, 198, 135–147. doi:10.1016/S0048-9697(97)05452-1.

    Article  CAS  Google Scholar 

  • Szefer, P. (1986). Some metals in benthic invertebrates in Gdansk Bay. Marine Pollution Bulletin, 17, 503–507. doi:10.1016/0025-326X(86)90639-9.

    Article  CAS  Google Scholar 

  • Taylor, A., & Maher, W. (2003). The use of two marine gastropods, Austrocochlea constricta and Bembicium auratum as Biomonitors of zinc, cadmium and copper exposure: effect of mass, within and between site variability and net accumulation relative to environmental exposure. Journal of Coastal Research, 19, 541–549.

    Google Scholar 

  • United Kingdom Food Standars Agency. (2002). Review of manganese, revised version. Expert Group on Minerals, London, United Kingdom. Retrieved from http://www.foodstandards.gov.uk/multimedia/pdfs/evm9922p.pdf.

  • United States Environmental Protection Agency (USEPA) Method 3052 (1996). Microwave assisted acid digestion of siliceous and organically based matrices. USEPA, Washington, DC. Retrieved from http://www.epa.gov/SW-846/pdfs/3052.pdf.

  • Viarengo, A. (1989). Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Aquatic Sciences, 1, 295–317.

    CAS  Google Scholar 

  • Viaroli, P., Lasserre, P., & Campostrini, P. (2007). Lagoons and coastal wetlands. Hydrobiologia, 577, 1–3. doi:10.1007/s10750-006-0412-9.

    Article  Google Scholar 

  • Velasco, J., Lloret, L., Millán, A., Barahona, J., Abellán, P., & Sánchez-Fernández, D. (2006). Nutrient and particulate inputs into the MarMenor lagoon (SE Spain) from an intensive agricultural watershed. Water, Air, and Soil Pollution, 176, 37–56. doi:10.1007/s11270-006-2859-8.

    Article  CAS  Google Scholar 

  • Wagner, A., & Boman, J. (2004). Biomonitoring of trace elements in Vietnamese freshwater mussels. Spectrochimica Acta Part B, 59, 1125–1132. doi:10.1016/j.sab.2003.11.009.

    Article  CAS  Google Scholar 

  • Wallace, W. G., & Luoma, S. N. (2003). Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM). Marine Ecology Progress Series, 257, 125–137. doi:10.3354/meps257125.

    Article  CAS  Google Scholar 

  • Wallace, W. G., Lopez, G. R., & Levinton, J. S. (1998). Cd resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Marine Ecology Progress Series, 172, 225–237. doi:10.3354/meps172225.

    Article  CAS  Google Scholar 

  • Wilson, J. G. (1982). Heavy metals in Littorina rudis along a copper contamination treatment. Journal of Life Sciences Royal Dublin Society, 4, 27–35.

    Google Scholar 

  • World Health Organization (WHO) (1996). Trace elements in human nutrition and health. Geneva: WHO.

    Google Scholar 

  • Ybáñez, N., Cervera, M. L., Montoro, R., & De la Guardia, M. (1991). Comparison of dry mineralization and microwave-oven digestion for the determination of arsenic in mussel products by platform in furnace Zeeman-effect atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 6, 379–384. doi:10.1039/ja9910600379.

    Article  Google Scholar 

  • Zavodnik, D., & Simunovic, A. (1997). Beskraljesnjaci morskog dna Jadrana. Sarajevo: IP Svjetlost.

    Google Scholar 

Download references

Acknowledges

Support for this research was provided by the Ministerio de Ciencia y Tecnología of Spain (CGL2004-05807). A. María Cervantes has a predoctoral fellowship (FPU) financed by the Spanish Ministry of Education and Science (MEC). We also thank Graham Langworthy and J. Mari Belchí from the Language Service of the Universidad Politécnica de Cartagena for improving the English translation. We acknowledge the valuable collaboration and efficiency of A. Belen Rodríguez-Caparrós and Magdalena Vázquez from the Servicio de Apoyo a la Investigación Tecnológica (SAIT) of the Universidad Politécnica de Cartagena, in the management of the ICP-MS equipment. We also wish thank Dr. Javier Gilabert from the Universidad Politécnica de Cartagena for the helpful suggestions about mollusks behavior. Finally, the collaboration of C. Egea Nicolás and M. J. Roca Hernández was invaluable due to the fact that they showed us how to find mollusks hidden under the sediments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Álvarez-Rogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

María-Cervantes, A., Jiménez-Cárceles, F.J. & Álvarez-Rogel, J. As, Cd, Cu, Mn, Pb, and Zn Contents in Sediments and Mollusks (Hexaplex trunculus and Tapes decussatus) from Coastal Zones of a Mediterranean Lagoon (Mar Menor, SE Spain) Affected by Mining Wastes. Water Air Soil Pollut 200, 289–304 (2009). https://doi.org/10.1007/s11270-008-9913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9913-7

Keywords

Navigation