Skip to main content
Log in

Release of Ni and Zn from Contaminated Floodplain Soils Under Saturated Flow Conditions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 25 June 2009

Abstract

As floodplain soils are often contaminated, we studied the release of trace metals from three topsoil horizons in column experiments with variable flow interruptions and flow velocities, compared it with that in batch leaching tests and evaluated the column data by inverse simulations. Only small proportions (<1%) of trace metals present in the neutral and humic soils were mobilised by the batch leaching tests and the column experiments. Release of Cr, Cu, Ni and Zn in the column experiments was rate-limited, as detected by increased concentrations after flow interruptions. A combination of linear equilibrium and non-equilibrium isotherms reflected the Ni and Zn elution data, with Zn release being slower. Simulated values for initially bound metals available for release are in the same order of magnitude as those determined by the batch leaching tests. However, the consistency of both experimental approaches decreases with increasing rate limitation, as detected here for Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ad hoc, Boden, A. G. (2005). Bodenkundliche Kartieranleitung (KA 5). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

  • Ajiboye, B., Akinremi, O. O., Hu, Y., & Jürgensen, A. (2008). XANES speciation of phosphorus in organically amended and fertilized Vertisol and Mollisol. Soil Science Society of America Journal, 72, 1256–1262. doi:10.2136/sssaj2007.0078.

    Article  CAS  Google Scholar 

  • BBodSchV (1999). Verordnung zur Durchführung des Bundes-Bodenschutzgesetzes (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 16.7.1999). BGBl, I, 1554–1582.

    Google Scholar 

  • Berger, W., Scheuering, I., & Peiffer, S. (2006). Emissionsabschätzung aus kontaminierten Materialien—was können Labormethoden hierzu leisten? altlasten spektrum, 15, 154–161.

    CAS  Google Scholar 

  • Brümmer, G. W., Gerth, J., & Tiller, K. G. (1988). Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science, 39, 37–52. doi:10.1111/j.1365-2389.1988.tb01192.x.

    Article  Google Scholar 

  • Brusseau, M. L. (1992). Nonequilibrium transport of organic chemicals: The impact of pore-water velocity. Journal of Contaminant Hydrology, 9, 353–368. doi:10.1016/0169-7722(92)90003-W.

    Article  CAS  Google Scholar 

  • Buczko, U., Hopp, L., Berger, W., Durner, W., Peiffer, S., & Scheithauer, M. (2004). Simulation of chromium transport in the unsaturated zone for predicting contaminant entries into groundwater. Journal of Plant Nutrition and Soil Science, 167, 284–292. doi:10.1002/jpln.200421371.

    Article  CAS  Google Scholar 

  • Delay, M., Lager, T., Schulz, H. D., & Frimmel, F. H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27, 248–255. doi:10.1016/j.wasman.2006.01.013.

    Article  CAS  Google Scholar 

  • Devai, I., Patrick, W. H., Jr., Neue, H.-U., DeLaune, R. D., Kongchum, M., & Rinklebe, J. (2005). Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany). Analytical Letters, 38, 1037–1048.

    CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. The Science of the Total Environment, 407, 2919–2930.

    Article  CAS  Google Scholar 

  • Eriksson, N., & Destouni, G. (1997). Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resources Research, 33, 471–483. doi:10.1029/96WR03466.

    Article  CAS  Google Scholar 

  • Förstner, U., Heise, S., Schwartz, R., Westrich, B., & Ahlf, W. (2004). Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe river catchment area. Journal of Soils and Sediments, 4, 247–260. doi:10.1007/BF02991121.

    Article  Google Scholar 

  • Gee, A. K., & Bruland, K. W. (2002). Tracing Ni, Cu, and Zn kinetics and equilibrium partitioning between dissolved and particulate phases in South San Francisco Bay, California, using stable isotopes and high-resolution inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta, 66, 3063–3083. doi:10.1016/S0016-7037(02)00907-9.

    Article  CAS  Google Scholar 

  • Hinz, C., & Selim, H. M. (1999). Kinetics of Zn sorption–desorption using a thin disk flow method. Soil Science, 164, 92–100. doi:10.1097/00010694-199902000-00003.

    Article  CAS  Google Scholar 

  • IUSS/ISRIC/FAO (2006). World reference base for soil resources 2006. Rome: FAO.

    Google Scholar 

  • Kalbe, U., Berger, W., Eckhardt, J., & Simon, F.-G. (2008). Evaluation of leaching and extraction procedures for soil and waste. Waste Management, 28, 1027–1038. doi:10.1016/j.wasman.2007.03.008.

    Article  CAS  Google Scholar 

  • Kandpal, G., Srivastava, P. C., & Ram, B. (2005). Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source. Water, Air, and Soil Pollution, 161, 353–363. doi:10.1007/s11270-005-5548-0.

    Article  CAS  Google Scholar 

  • Kowalik, C., Kraft, J., & Einax, J. W. (2003). The situation of the German Elbe tributaries—Development of the loads in the last 10 years. Acta Hydrochimica et Hydrobiologica, 31, 334–345. doi:10.1002/aheh.200300507.

    Article  CAS  Google Scholar 

  • Krüger, F., & Gröngröft, A. (2003). The difficult assessment of heavy metal contamination in soils and plants in Elbe River floodplains. Acta Hydrochimica et Hydrobiologica, 31, 436–443. doi:10.1002/aheh.200300495.

    Article  CAS  Google Scholar 

  • Lager, T., Delay, M., Karius, V., Hamer, K., Frimmel, F. H., & Schulz, H. D. (2006). Determination and quantification of the release of inorganic contaminants from municipal waste incineration ash. Acta Hydrochimica et Hydrobiologica, 34, 73–85. doi:10.1002/aheh.200500610.

    Article  CAS  Google Scholar 

  • Miretzky, P., Munoz, C., & Carrillo-Chavez, A. (2006). Experimental Zn(II) retention in a sandy loam soil by very small columns. Chemosphere, 65, 2082–2089. doi:10.1016/j.chemosphere.2006.06.047.

    Article  CAS  Google Scholar 

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H.-U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe River floodplains (Germany). Environmental Pollution, 145, 800–812. doi:10.1016/j.envpol.2006.05.016.

    Article  CAS  Google Scholar 

  • Pang, L., Close, M., Schneider, D., & Stanton, G. (2002). Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology, 57, 247–258. doi:10.1016/S0169-7722(01)00223-6.

    Article  Google Scholar 

  • Prechtel, A., Knabner, P., Schneid, E., & Totsche, K. U. (2002). Simulation of carrier facilitated transport of phenanthrene in a layered soil profile. Journal of Contaminant Hydrology, 56, 209–225. doi:10.1016/S0169-7722(01)00211-X.

    Article  CAS  Google Scholar 

  • Rinklebe, J. (2004). Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von ß-Glucosidase, Protease und alkalischer Phosphatase. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Germany.

  • Rinklebe, J., Franke, C., & Neue, H.-U. (2007). Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma, 141, 210–223. doi:10.1016/j.geoderma.2007.06.001.

    Article  CAS  Google Scholar 

  • Scheithauer, M. (2003). Aktuelle Ergebnisse des F&E-Vorhabens “Emissionsabschätzung/Prüfwerte”. In R. Röder & C. Schertler (Eds.), Münchener Beiträge zur Sickerwasserprognose—Forschung und Praxis, vol. 56, (pp. 111–128). München: Bayerisches Landesamt für Wasserwirtschaft.

    Google Scholar 

  • Schlichting, E., Blume, H.-P., & Stahr, K. (1995). Bodenkundliches Praktikum. Berlin: Blackwell Wissenschaftsverlag.

    Google Scholar 

  • Schneid, E., Prechtel, A., & Knabner, P. (2000). A comprehensive tool for the simulation of complex reactive transport and flow in soils. Land Contamination & Reclamation, 8, 357–365.

    Google Scholar 

  • Schuwirth, N., & Hofmann, T. (2006). Comparability of leaching tests and soil water sampling as an alternative for the assessment of inorganic soil contaminations. Journal of Soils and Sediments, 6, 102–112. doi:10.1065/jss2005.10.149.

    Article  CAS  Google Scholar 

  • Shi, Z., Di Toro, D. M., Allen, H. E., & Sparks, D. L. (2008). A WHAM-based kinetics model for Zn adsorption and desorption to soils. Environmental Science & Technology, 42, 5630–5636. doi:10.1021/es800454y.

    Article  CAS  Google Scholar 

  • Sommerfeld, F., & Schwedt, G. (1996). Vergleich ausgewählter Elutionsverfahren zur Beurteilung der Mobilität von Metallen. Acta Hydrochimica et Hydrobiologica, 24, 255–259. doi:10.1002/aheh.19960240602.

    Article  CAS  Google Scholar 

  • Strobel, B. W., Hansen, H. C. B., Borggaard, O. K., Andersen, M. K., & Raulund-Rasmussen, K. (2001). Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochimica et Cosmochimica Acta, 65, 1233–1242. doi:10.1016/S0016-7037(00)00602-5.

    Article  CAS  Google Scholar 

  • Sukreeyapongse, O., Holm, P. E., Strobel, B. W., Panichsakpatana, S., Magid, J., & Hansen, H. C. B. (2002). pH-Dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31, 1901–1909.

    Article  CAS  Google Scholar 

  • Toride, N., Leji, F. J., & van Genuchten, M. T. (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Riverside: US Salinity Laboratory.

    Google Scholar 

  • van der Sloot, H. A., Comans, R. N. J., & Hjelmar, O. (1996). Similarities in the leaching behavior of trace contaminants from waste, stabilized waste, construction materials and soils. Science of the Total Environment, 178, 111–126. doi:10.1016/0048-9697(95)04803-0.

    Article  Google Scholar 

  • Voegelin, A., & Kretzschmar, R. (2005). Formation and dissolution of single and mixed Zn and Ni precipitates in soil: Evidence from column experiments and extended X-ray absorption fine structure spectroscopy. Environmental Science & Technology, 39, 5311–5318. doi:10.1021/es0500097.

    Article  CAS  Google Scholar 

  • Wehrer, M., & Totsche, K. U. (2003). Detection of non-equilibrium contaminant release in soil columns: Delineation of experimental conditions by numerical simulations. Journal of Plant Nutrition and Soil Science, 166, 475–483. doi:10.1002/jpln.200321095.

    Article  CAS  Google Scholar 

  • Wehrer, M., & Totsche, K. U. (2008). Effective rates of heavy metal release from alkaline wastes—Quantified by column outflow experiments and inverse simulations. Journal of Contaminant Hydrology, 97, 53–66. doi:10.1016/j.jconhyd.2008.07.005.

    Article  CAS  Google Scholar 

  • Wijnhoven, S., van der Velde, G., Leuven, R. S. E. W., Eijsackers, H. J. P., & Smits, A. J. M. (2006). The effect of turbation on zinc relocation in a vertical floodplain soil profile. Environmental Pollution, 140, 444–452. doi:10.1016/j.envpol.2005.08.011.

    Article  CAS  Google Scholar 

  • Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–510.

    Google Scholar 

Download references

Acknowledgements

The study was funded by the German Research Foundation (DFG, Re 2251/1). We would like to thank K. Greef, K. Kinze, S. Meißner, Dr. H.-J. Staerk, J. Steffen, Dr. M. Thönnessen and Dr. R. Wennrich for various analyses as well as Dr. M. Wehrer for valuable suggestions concerning the modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Rennert.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11270-009-0110-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennert, T., Rinklebe, J. Release of Ni and Zn from Contaminated Floodplain Soils Under Saturated Flow Conditions. Water Air Soil Pollut 205, 93–105 (2010). https://doi.org/10.1007/s11270-009-0058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0058-0

Keywords

Navigation