Skip to main content
Log in

Constructed Wetlands Treating Runoff Contaminated with Nutrients

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The aim was to assess the role of Phragmites australis (Cav.) Trin. ex Steud. in experimental, mature, and temporarily flooded vertical flow wetland filters treating urban runoff rich in organic matter. During the experiment, ammonium chloride was added to sieved concentrated road runoff to simulate primary treated urban runoff contaminated with nitrogen. Five days at 20°C N-allylthiourea biochemical oxygen demand (BOD) and chemical oxygen demand removal efficiencies were relatively lower for planted than unplanted filters. Moreover, there was no significant difference for BOD removal for all filters under fluctuating inflow concentrations of sulfate. The nitrogen removal performances of planted filters were more efficient and stable throughout the seasons compared to those of unplanted filters. A substantial load of nitrogen (approximately 500 mg per filter) was removed by harvesting P. australis. Plant uptake was the main removal mechanism for nitrogen during high concentrations (10 mg/L) of ammonia-nitrogen in the urban runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, S. E. (1974). Chemical analysis of ecological materials. Oxford, UK: Blackwell.

    Google Scholar 

  • American Public Health Association (APHA). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: APHA-AWWWA-WEF.

    Google Scholar 

  • Bezbaruah, A.N. (2002). Quantification of Oxygen Release by Plant Roots in Constructed Wetlands. Ph.D. Dissertation. Lincoln, NE, USA: University of Nebraska.

  • Bezbaruah, A. N., & Zhang, T. C. (2003). Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal. Environmental Science & Technology, 37(8), 1690–1697. doi:10.1021/es020912w.

    Article  CAS  Google Scholar 

  • Birch, G. F., Matthai, C., Fazeli, M. S., & Suh, J. (2004). Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands, 24(2), 459–466. doi:10.1672/0277-5212(2004)024[0459:EOACWI]2.0.CO;2.

    Article  Google Scholar 

  • Caselles-Osorio, A., & Garcia, J. (2006). Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter. Water Research, 40(19), 3603–3611. doi:10.1016/j.watres.2006.05.038.

    Article  CAS  Google Scholar 

  • Kadlec, R., Knight, R., Vymazal, J., Brix, H., Cooper, P., & Haberl, R. (2000). Constructed wetlands for pollution control. Scientific and technical report number 8. London, UK: IWA.

    Google Scholar 

  • Kadlec, R. H., Tanner, C. C., Hally, V. M., & Gibbs, M. M. (2005). Nitrogen spiraling in subsurface flow constructed wetlands: Implications for treatment response. Ecological Engineering, 25(4), 365–381. doi:10.1016/j.ecoleng.2005.06.009.

    Article  Google Scholar 

  • Kalra, Y. P. (1998). Handbook of reference methods for plant analysis. Florida, USA: CRC.

    Google Scholar 

  • Kalyuzhnyi, S. V., & Fedorovich, V. V. (1998). Mathematical modelling of competition between sulfate reduction and methanogenesis in anaerobic reactors. Bioresource Technology, 65(3), 227–242. doi:10.1016/S0960-8524(98)00019-4.

    Article  CAS  Google Scholar 

  • Kao, J. T., Titus, J. E., & Zhu, W. X. (2003). Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands, 23(4), 979–987. doi:10.1672/0277-5212(2003)023[0979:DNAPRB]2.0.CO;2.

    Article  Google Scholar 

  • Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering, 20(2), 157–169. doi:10.1016/S0925-8574(03)00011-9.

    Article  Google Scholar 

  • Kuo, W. C., & Shu, T. Y. (2004). Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Journal of Hazardous Materials, B113(1–3), 147–155. doi:10.1016/j.jhazmat.2004.05.033.

    Article  Google Scholar 

  • Lee, B.-H., & Scholz, M. (2006a). What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecological Engineering, 29(1), 87–95. doi:10.1016/j.ecoleng.2006.08.001.

    Article  Google Scholar 

  • Lee, B.-H., & Scholz, M. (2006b). A comparative study: Prediction of constructed treatment wetland performance with K-nearest neighbours and neural networks. Water, Air, and Soil Pollution, 174(1–4), 279–301. doi:10.1007/s11270-006-9113-2.

    Article  CAS  Google Scholar 

  • Lim, P. E., Wong, T. F., & Lim, D. V. (2001). Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions. Environment International, 26(5–6), 425–431. doi:10.1016/S0160-4120(01)00023-X.

    Article  CAS  Google Scholar 

  • Meuleman, A. F. M., Beekman, J. P., & Verhoeven, J. T. A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis after wastewater application. Wetlands, 22(4), 712–721. doi:10.1672/0277-5212(2002)022[0712:NRANUE]2.0.CO;2.

    Article  Google Scholar 

  • Meuleman, A. F. M., Van Logtestijn, R., Rijs, G. B., & Verhoeven, J. T. A. (2003). Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment. Ecological Engineering, 20(1), 31–44. doi:10.1016/S0925-8574(03)00002-8.

    Article  Google Scholar 

  • Poe, A. C., Pichler, M. F., Thompson, S. P., & Paerl, H. W. (2003). Denitrification in a constructed wetland receiving agricultural runoff. Wetlands, 23(4), 817–826. doi:10.1672/0277-5212(2003)023[0817:DIACWR]2.0.CO;2.

    Article  Google Scholar 

  • Reilly, J. F., Horne, A. J., & Miller, C. D. (2000). Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecological Engineering, 14(1–2), 33–47. doi:10.1016/S0925-8574(99)00018-X.

    Google Scholar 

  • Reinhardt, M., Muller, B., Gachter, R., & Wehrli, B. (2006). Nitrogen removal in a small constructed wetland: An isotope mass balance approach. Environmental Science & Technology, 40(10), 3313–3319. doi:10.1021/es052393d.

    Article  CAS  Google Scholar 

  • Sansalone, J. J. (1999). Adsorptive infiltration of metals in urban drainage—media characteristics. Science of the Total Environment, 235(1–3), 179–188. doi:10.1016/S0048-9697(99)00211-9.

    Article  Google Scholar 

  • Scholz, M. (2006a). Wetland systems to control urban runoff. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Scholz, M. (2006b). Best management practice: A sustainable urban drainage system management case study. Water International, 31(3), 310–319. doi:10.1080/02508060608691934.

    Article  Google Scholar 

  • Scholz, M., & Martin, R. J. (1998). Control of bio-regenerated granular activated carbon by spreadsheet modeling. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 71(3), 253–261. doi:10.1002/(SICI)1097-4660(199803)71:3<253::AID-JCTB834>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Scholz, M., & Xu, J. (2002a). Comparison of constructed reed beds with different media and macrophytes treating urban stream water contaminated with lead and copper. Ecological Engineering, 18(3), 385–390. doi:10.1016/S0925-8574(01)00100-8.

    Article  Google Scholar 

  • Scholz, M., & Xu, J. (2002b). Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Bioresource Technology, 83(2), 71–79. doi:10.1016/S0960-8524(01)00210-3.

    Article  CAS  Google Scholar 

  • Silvan, N., Vasander, H., Karsisto, M., & Laine, J. (2003). Microbial immobilisation of added nitrogen and phosphorus in constructed wetland buffer. Applied Soil Ecology, 24(2), 143–149. doi:10.1016/S0929-1393(03)00092-1.

    Article  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse (4th ed.). New York, NY, USA: Metcalf and Eddy.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (2000). Constructed Wetlands Treatment of Municipal Wastewater. EPA-625-R-99-010. U.S. EPA, Office of Research and Development: Cincinnati, OH, USA.

    Google Scholar 

  • Verhoeven, J. T. A., & Meuleman, A. F. M. (1999). Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12(1–2), 5–12. doi:10.1016/S0925-8574(98)00050-0.

    Article  Google Scholar 

  • Vymazal, J. (2002). The use of subsurface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 18(5), 633–646. doi:10.1016/S0925-8574(02)00025-3.

    Article  Google Scholar 

  • Vymazal, J., & Krasa, P. (2003). Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Science and Technology, 48(5), 299–305.

    CAS  Google Scholar 

  • Wiessner, A., Kappelmeyer, U., Kunschk, P., & Kästner, M. (2005). Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research, 39(19), 4643–4650. doi:10.1016/j.watres.2005.09.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the “UK/China Postgraduate Research Scholarships for Excellence” initiative for Dr Xiaohui Wu, who undertook most of the laboratory work. Further thanks go to Mr. Byoung-Hwa Lee, Mrs. Sara Kazemi-Yazdi, Mr. Paul Eke, and Mr. Piotr Grabowiecki for their practical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, M., Hedmark, Å. Constructed Wetlands Treating Runoff Contaminated with Nutrients. Water Air Soil Pollut 205, 323–332 (2010). https://doi.org/10.1007/s11270-009-0076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0076-y

Keywords

Navigation