Skip to main content
Log in

Physiological Aspects of Cadmium and Nickel Toxicity in the Lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study was undertaken with the aim of investigating the effect of Cd2+ and Ni2+ containing solutions on selected physiological parameters (metal uptake, chlorophyll a fluorescence, assimilation pigment composition, thiobarbituric acid-reactive substance production, and ergosterol content) in the lichens Peltigera rufescens and Cladina arbuscula subsp. mitis growing on historic copper mine-spoil heaps at Ľubietová-Podlipa, Slovakia. Physiological measurements did not confirm significantly higher sensitivity to Cd and Ni of the cyanolichen P. rurescens compared to the green-algal lichen C. arbuscula subsp. mitis. Under natural conditions, C. arbuscula subsp. mitis is able to grow directly on copper mine heaps of Central Slovakia, while P. rufescens grows only on their margins. A crucial factor for this limited distribution of P. rufescens may be, at least in part, the higher intracellular accumulation of metals. Although lichen photobionts are generally regarded as key elements of lichen sensitivity, further research is necessary to elucidate this point since the higher levels of intracellular Cd and Ni do not allow to regard cyanobacterial photobionts of P. rufescens as more sensitive than the eukaryotic ones of C. arbuscula subsp. mitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bačkor, M., & Zetíková, J. (2003). Effects of copper, cobalt and mercury on the chlorophyll content of lichens Cetraria islandica and Flavocetraria cucullata. Journal of the Hattori Botanical Laboratory, 93, 175–187.

    Google Scholar 

  • Bačkor, M., & Fahselt, D. (2004). Using EDX-micronalysis and X-ray mapping to demonstrate metal uptake by lichens. Biologia, 59, 39–45.

    Google Scholar 

  • Backor, M., & Fahselt, D. (2008). Lichen photobionts and metal toxicity. Symbiosis, 46, 1–10.

    CAS  Google Scholar 

  • Bačkor, M., Fahselt, D., Davidson, R. D., & Wu, C. T. (2003). Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Archives of Environmental Contamination and Toxicology, 45, 159–167.

    Article  CAS  Google Scholar 

  • Bačkor, M., Kováčik, J., Dzubaj, A., & Bačkorová, M. (2009). Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regulation, 58, 279–286.

    Article  CAS  Google Scholar 

  • Bačkor, M., Gibalová, A., Buďová, J., Mikeš, J., & Solár, P. (2006a). Cadmium-induced stimulation of stress-protein hsp70 in lichen photobiont Trebouxia erici. Plant Growth Regulation, 50, 159–164.

    Article  CAS  Google Scholar 

  • Bačkor, M., Pawlik-Skowrońska, B., Tomko, J., Buďová, J., & Sanità di Toppi, L. (2006b). Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycological Research, 110, 994–999.

    Article  CAS  Google Scholar 

  • Bačkor, M., Váczi, P., Barták, M., Buďová, J., & Dzubaj, A. (2007). Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist, 110, 100–107.

    Article  Google Scholar 

  • Banásová, V., Horák, O., Čiamporová, M., Nadubinská, M., & Lichtscheidl, I. (2006). The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia, 61, 433–439.

    Article  Google Scholar 

  • Bargagli, R., & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In P. L. Nimis, C. Scheidegger & P. A. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 65–84). New York: Kluwer.

    Google Scholar 

  • Bargagli, R., Borghini, F., & Celesti, C. (2000). Elemental composition of the lichen Umbilicaria decussata. Italian Journal of Zoology, 67, 157–162.

    Article  CAS  Google Scholar 

  • Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., & Gallorini, M. (2007). Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environmental Pollution, 148, 468–476.

    Article  CAS  Google Scholar 

  • Boominathan, R., & Doran, P. M. (2002). Ni-induced oxidative stress in roots of the Ni-hyperaccumulator, Alyssum bertolonii. New Phytologist, 156, 205–215.

    Article  CAS  Google Scholar 

  • Boonpragob, K. (2002). Monitoring physiological change in lichens: total chlorophyll—content and chlorophyll degradation. In P. L. Nimis, C. Scheidegger & P. A. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 323–326). New York: Kluwer.

    Google Scholar 

  • Branquinho, C., Brown, D. H., Máguas, C., & Catarino, F. (1997). Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environmental and Experimental Botany, 37, 95–105.

    Article  CAS  Google Scholar 

  • Brown, D. H., & Beckett, R. P. (1983). Differential sensitivity of lichens to heavy metals. Annals of Botany, 52, 51–58.

    CAS  Google Scholar 

  • Carreras, H. A., & Pignata, M. L. (2007). Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety, 67, 59–66.

    Article  CAS  Google Scholar 

  • Chiarenzelli, J. R., Aspler, L. B., Ozarko, D. L., Hall, G. E. M., Powis, K. B., & Donaldson, J. A. (1997). Heavy metals in lichens, southern District of Keewatin, northwest territories, Canada. Chemosphere, 35, 1329–1341.

    Article  CAS  Google Scholar 

  • Dahlman, L., Zetherström, M., Sundberg, B., Näsholm, T., & Palmqvist, K. (2002). Measuring ergosterol and chitin in lichens. In I. Kranner, R. Beckett & A. Varma (Eds.), Protocols in Lichenology: Culturing, biochemistry, Ecophysiology and Use in Biomonitoring (pp. 348–362). New York: Springer.

    Google Scholar 

  • Dzubaj, A., Bačkor, M., Tomko, J., Peli, E., & Tuba, Z. (2008). Tolernace of the lichen Xanthoria parietina (L.) Th. Fr. To metal stress. Ecotoxicology and Environmental Safety, 70, 319–326.

    Article  CAS  Google Scholar 

  • Gajewska, E., & Skłodowska, M. (2005). Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiologiae Plantarum, 27, 329–339.

    Article  CAS  Google Scholar 

  • Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences, 20, 309–371.

    Article  CAS  Google Scholar 

  • Garty, J., Cohen, Y., & Kloog, N. (1998). Airborne elements, cell membranes, and chlorophyll in transplanted lichens. Journal of Environmental Quality, 27, 973–979.

    Article  CAS  Google Scholar 

  • Kováčik, J., & Bačkor, M. (2007). Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water Air Soil Pollution, 185, 185–193.

    Article  CAS  Google Scholar 

  • Kováčik, J., Tomko, J., Bačkor, M., & Repčák, M. (2006). Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regulation, 50, 239–247.

    Article  CAS  Google Scholar 

  • Kováčik, J., Klejdus, B., Kaduková, J., & Bačkor, M. (2009). Physiology of Matricaria chamomilla exposed to nickel excess. Ecotoxicology and Environmental Safety, 72, 603–609.

    Article  CAS  Google Scholar 

  • Küpper, H., & Kroneck, P. M. H. (2007). Nickel in the environment and its role in the metabolism of plants and cyanobacteria. In A. Sigel, H. Sigel & R. K. O. Sigel (Eds.), Metal ions in life sciences, vol 2 (pp. 31–62). Hoboken: Wiley.

    Google Scholar 

  • Loppi, S., Pirintsos, S. A., & De Dominicis, V. (1999). Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environmental Monitoring and Assessment, 58, 121–131.

    Article  CAS  Google Scholar 

  • Monnet, F., Bordas, F., Deluchat, V., Chatenet, P., Botineau, M., & Baudu, M. (2005). Use of the aquatic lichen Dermatocarpon luridum as bioindicator of copper pollution: Accumulation and cellular distribution tests. Environmental Pollution, 138, 455–461.

    Article  CAS  Google Scholar 

  • Nieminen, T. M., Ukonmaanaho, L., Rausch, N., & Shotyk, W. (2007). Biogeochemistry of nickel and its release into the environment. In A. Sigel, H. Sigel & R. K. O. Sigel (Eds.), Metal ions in life sciences, vol. 2 (pp. 1–30). New York: Wiley.

    Google Scholar 

  • Pawlik-Skowrońska, B., Sanità di Toppi, L., Favali, M. A., Fossati, F., Pirszel, J., & Skowroński, T. (2002). Lichens respond to heavy metals by phytochelatin synthesis. New Phytologist, 156, 95–102.

    Article  Google Scholar 

  • Riget, F., Asmund, G., & Aastrup, P. (2000). The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Science of the Total Environment, 245, 137–148.

    Article  CAS  Google Scholar 

  • Ronen, R., & Galun, M. (1984). Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24, 239–245.

    Article  CAS  Google Scholar 

  • Sanità di Toppi, L., & Gabrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.

    Article  Google Scholar 

  • Sanità di Toppi, L., Musetti, R., Vattuone, Z., Pawlik-Skowrońska, B., Fossati, F., Bertoli, L., et al. (2005). Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microscopy Research and Techniques, 66, 229–238.

    Article  CAS  Google Scholar 

  • Sanita di Toppi, L., Pawlik-Skowrońska, B., Vurro, E., Vattuone, Z., Kalinowska, R., Restivo, F. M., et al. (2008). First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta). Environmental Pollution, 151, 280–286.

    Article  CAS  Google Scholar 

  • Stohs, S. J., & Baghi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336.

    Article  CAS  Google Scholar 

  • Sundberg, B., Ekblad, A., Nasholm, T., & Palmqvist, K. (1999). Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Functional Ecology, 13, 119–125.

    Article  Google Scholar 

  • Vavilin, D. V., Ducruet, J. M., Matorin, D. N., Venediktov, P. S., & Rubin, A. B. (1998). Membrane lipid peroxidation, cell viability and Photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions. Journal of Photochemistry and Photobiology B: Biology, 42, 233–239.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology, 144, 307–313.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Slovak Grant Agency (VEGA 1/4337/07). We thank BSc. Silvia Malčovská for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bačkor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bačkor, M., Kováčik, J., Piovár, J. et al. Physiological Aspects of Cadmium and Nickel Toxicity in the Lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis . Water Air Soil Pollut 207, 253–262 (2010). https://doi.org/10.1007/s11270-009-0133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0133-6

Keywords

Navigation