Skip to main content
Log in

In Situ Heavy Metal Accumulation in Lettuce Growing Near a Former Mining Waste Disposal Area: Implications for Agricultural Management

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Mining wastes may pose risk nearby urban and agricultural areas. We investigated a lettuce crop land close to a former capped mine tailing in order to determinate the metal uptake by crops. Soil plot sampling design within the crop area and two transects along the tailing were performed. In addition, lettuces (root and leaves) were analyzed after transplant and harvest. The results showed a pH of around 7–8 for all the soil samples. Total metal concentrations were as follows: 190–510 mg kg−1 Pb, 13–21 mg kg−1 Cu, and 210–910 mg kg−1 Zn. Diethylene triamine pentaacetic acid-extractable Pb was around 18% of the total Pb in some samples. Transects along the base and on the plateau of the tailing showed high metal concentrations of Pb (up to 5,800 mg kg−1) and Zn (up to 4,500 mg kg−1), indicating that capping layer had been eroded. Lettuce leaves showed Pb concentrations within standard for human health (<0.3 mg kg−1 in fresh weight). For essential micronutrients such as Cu and Zn, leaves had optimal content (10–28 mg kg−1 Cu, 60–85 mg kg−1 Zn). A continued monitoring in metal uptake is needed in crop lands close to mining wastes in order to prevent risks in food safety. Capped tailings must be monitored and rehabilitation works performed from time to time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alloway, B. J., Thornton, I., Smart, G. A., Sherlock, J. C., & Quinn, M. J. (1998). Metal availability. Science of the Total Environment, 75(1), 41–69.

    Article  Google Scholar 

  • Blasco, B., Rios, J. J., Cervilla, L. M., Sánchez-Rodríguez, E., Ruiz, J. M., & Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Annals of Applied Biology, 152(3), 289–299.

    Article  CAS  Google Scholar 

  • Branca, F., & Ferrari, M. (2002). Impact of micronutrient deficiencies on growth: The stunting syndrome. Annuals of Nutrition and Metabolism, 46, 8–17.

    Article  CAS  Google Scholar 

  • Chapman, H. D. (1965). Cation exchange capacity. In C. A. Black (Ed.), Methods of soils analysis (pp. 891–901). Madison: American Society of Agronomy.

    Google Scholar 

  • Cobb, G. P., Sands, K., Waters, M., Wixson, B. G., & Dorward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry, 19(3), 600–607.

    Article  CAS  Google Scholar 

  • Conesa, H. M. (2003). Informe Agronómico sobre la finca de “Las Jacobas”. Cartagena, Spain: Universidad Politécnica de Cartagena. Technical report.

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Union mining district (SE Spain). Science of the Total Environment, 366(1), 1–11.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Moradi, A. B., Robinson, B. H., Kuhne, G., Lehmann, E., & Schulin, R. (2009). Response of native grasses and Cicer arietinum to soil polluted with mining wastes: Implications for the management of land adjacent to mine sites. Environmental and Experimental Botany, 65(2–3), 198–204.

    Article  CAS  Google Scholar 

  • Duchaufour, Ph. (1970). Précis de Pedologie. París: Masson y Cie.

    Google Scholar 

  • European Communities. (2001) Commission Regulation 466/2001 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Commun. L77, 16/03/01, 1–13.

  • Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11(1–2), 163–167.

    Article  CAS  Google Scholar 

  • Gasic, K., & Korban, S. S. (2006). Heavy metal stress. In K. V. Madhava Rao, A. S. Raghavendra & K. Janardhan Reddy (Eds.), Physiology and molecular biology of stress tolerance in plants (pp. 219–254). New York: Springer.

    Chapter  Google Scholar 

  • Lee, J.-S., & Chon, H. T. (2003). Exposure assessment of heavy metals on abandoned metal mine areas by ingestion of soil, crop plant and groundwater. Journal de Physique IV, 107, 757–760.

    Article  CAS  Google Scholar 

  • Leita, L., Mondini, C., De Nobili, M., Simoni, A., & Sequi, P. (1998). Heavy metal content in xylem sap (Vitis vinifera) from mining and smelting areas. Environmental Monitoring and Assessment, 50(2), 189–200.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3), 421–428.

    Article  CAS  Google Scholar 

  • Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20(1), 3–18.

    Article  CAS  Google Scholar 

  • Martínez-Orozco, J. M., Valero-Huete, F., & González-Alonso, S. (1993). Environmental problems and proposals to reclaim the areas affected by mining exploitations in the Cartagena mountains (southeast Spain). Landscape and Urban Planning, 23(3–4), 195–207.

    Article  Google Scholar 

  • Martínez-Sánchez, M. J., & Pérez-Sirvent, C. (2007). Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Murcia: Universidad de Murcia, Región de Murcia, Consejería de Desrrollo Sostenible y Ordenación del Territorio.

    Google Scholar 

  • NAS (National Academy of Sciences). (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy of Sciences, Institute of Medicine, Food and Nutrition Board, USA, http://www.nap.edu.

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: processes, predictions, prevention. Journal of Geochemical Exploration, 52(1–2), 5–23.

    Article  CAS  Google Scholar 

  • White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10(12), 586–593.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Dr. Ripolles for his valuable comments and Fundación Séneca de la Comunidad Autónoma de Murcia for its financial support. Also, we want to thank Willy Manfredo for his comments in relation to English typing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Conesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conesa, H.M., Pérez-Chacón, J.A., Arnaldos, R. et al. In Situ Heavy Metal Accumulation in Lettuce Growing Near a Former Mining Waste Disposal Area: Implications for Agricultural Management. Water Air Soil Pollut 208, 377–383 (2010). https://doi.org/10.1007/s11270-009-0173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0173-y

Keywords

Navigation