Skip to main content

Advertisement

Log in

3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The difficulty in forecasting concentration trends with a reasonable error is still an open problem. In this paper, an effort has been made to this purpose. Artificial Neural Networks are used in order to forecast the maximum daily value of the European Regional Pollution Index as well as the number of consecutive hours, during the day, with at least one of the pollutants above a threshold concentration, 24 to 72 h ahead. The prediction concerns seven different places within the Greater Athens Area, Greece. The meteorological and air pollution data used in this study have been recorded by the network of the Greek Ministry of the Environment, Physical Planning, and Public Works over a 5-year period, 2001–2005. The hourly values of air pressure and global solar irradiance for the same period have been recorded by the National Observatory of Athens. The results are in a very good agreement with the real-monitored data at a statistical significance level of p < 0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research, 92, 71–77.

    Article  CAS  Google Scholar 

  • Antonic, O., Hatic, D., Krian, J., & Bukocev, D. (2001). Modeling groundwater regime acceptable for the forest survival after the building of the hydro-electric power plant. Ecological Modeling, 138, 277–288.

    Article  Google Scholar 

  • Balaguer Ballester, E., Valls, G., Carrasco-Rodriguez, J., Soria Oliva, E., & Valle-Tascon, S. (2002). Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecological Modeling, 156, 27–41.

    Article  CAS  Google Scholar 

  • Bibi, H., Nutman, A., Shoseyov, D., Shalom, M., Peled, R., Kivity, S., et al. (2002). Prediction of emergency department visits for respiratory symptoms using an artificial neural network. Chest, 122, 1627–1632.

    Article  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, U.K.: Oxford University Press.

    Google Scholar 

  • Boznar, M., Lesjak, M., & Mlakar, P. (1993). A neural network-based method for short term predictions of ambient SO2 concentrations in highly polluted industrial areas of comlex terrain. Atmospheric Environment, 27(B), 221–230.

    Google Scholar 

  • Cheng, W. L., Chen, Y. S., Zhang, J., Lyons, T. J., Pai, J. L., & Chang, S. H. (2007). Comparison of the Revised Air Quality Index with the PSI and AQI indices. Science of the Total Environment, 382((2)-(3)), 191–198.

    Article  CAS  Google Scholar 

  • Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of Air and Waste Management Association, 47, 653–663.

    CAS  Google Scholar 

  • Corani, G. (2005). Air quality prediction in Milan: feedforward neural networks, pruned neural networks and lazy learning. Ecological Modeling, 185, 513–529.

    Article  Google Scholar 

  • Council Directive 96/62/EC. (1996). On ambient air quality assessment and management. Official Journal of the European Communities, L296(21.11.1996), 55–63.

    Google Scholar 

  • Council Directive 1999/30/EC. (1999). Limit values of sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Communities, L163(29.6.1999), 41–60.

    Google Scholar 

  • Directive 2000/69/EC of the European Parliament and the Council. (2000). Limit values for benzene and carbon monoxide in ambient air. Official Journal of the European Communities, L313(13.12.2000), 12–22.

    Google Scholar 

  • Directive 2002/3/EC of the European Parliament and the Council. (2002). Ozone in ambient air. Official Journal of the European Communities, L67(9.3.2002), 14–31.

    Google Scholar 

  • Dockery, D. W., Schwartz, J., & Spengler, J. D. (1992). Air pollution and daily mortality: Association with particulates and acid aerosols. Environmental Research, 59, 362–373.

    Article  CAS  Google Scholar 

  • Dutot, A. L., Rynkiewicz, J., Steiner, F. E., & Rude, J. (2007). A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental Modeling and Software, 22, 1261–1269.

    Article  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1998a). Artificial Neural Networks, the multilayer perceptron. A review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636.

    CAS  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1998b). Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33, 709–719.

    Article  Google Scholar 

  • Hect-Nielsen, R. (1990). Neurocomputing. Reading, M.A: Addison-Wesley.

    Google Scholar 

  • Hernandez, E., Martin, F., & Valero, F. (1992). Statistical forecast models for daily air particulate iron and lead concentrations for Madrid, Spain. Atmospheric Environment, 26(B), 107–116.

    Google Scholar 

  • Heymans, J. J., & Baird, A. (2000). A carbon flow model and network analysis of the northern Benguela upwelling system, Namibia. Ecological Modeling, 126, 9–32.

    Article  CAS  Google Scholar 

  • Karul, C., Soyupak, S., Cilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modeling, 164, 145–152.

    Article  Google Scholar 

  • Katsouyanni, K., Pantazopoulou, A., Touloumi, G., Tselepidaki, I., Moustris, K., Poulopoulou, G., et al. (1993). Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Archives of Environmental Health, 48, 235–242.

    CAS  Google Scholar 

  • Katsouyanni, K., Touloumi, G., Spix, C., Schwartz, I., Balducci, F., Medina, S., et al. (1997). Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. British Medical Journal, 314, 1658–1663.

    CAS  Google Scholar 

  • Kolehmainen, M., Martikainen, H., & Ruuskanen, J. (2001). Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35, 815–825.

    Article  CAS  Google Scholar 

  • Lapedes, A., & Farber, R. (1987). Non-linear signal processing using neural networks. Los Alamos National Laboratory: Los Alamos. Technical Report Νo. LA-UR-2662.

    Google Scholar 

  • Melas, D., Kioutsoukis, I., & Ziomas, I. (2000). Newral network model for predicting peak photochemical pollutant levels. Journal of Air and Waste Management Association, 50, 495–501.

    CAS  Google Scholar 

  • NSW Environment Protection Authority (1998). Action for Air. Sydney: EPA, 1998, with action for Air, 2006 update. Sydney: EPA, 2006. Available at: www.environment.nsw.gov.au/air/actionforair/execsum.htm.

  • NSW Department of Environment and Conservation (2006). Air pollution economics. Health costs of air pollution in the Greater Sydney Metropolitan Region. Sydney: DEC, 2006. Available at: www.epa.nsw.gov.au/resources/airpollution05623.pdf.

  • Nunnari, G., Nucifora, M., & Randieri, C. (1998). The application of neural techniques to the modeling of time-series of atmospheric pollution data. Ecological Modeling, 111, 187–205.

    Article  CAS  Google Scholar 

  • Paliatsos, A. G., Priftis, K. N., Ziomas, I. C., Panagiotopoulou-Gartagani, P., Nikolaou-Panagiotou, A., Tapratzi-Potamianou, P., et al. (2006). Association between ambient air pollution and childhood asthma in Athens, Greece. Fresenius Environmental Bulletin, 15, 614–618.

    CAS  Google Scholar 

  • Paliatsos, A. G., Kaldellis, J. K., & Nastos, P. T. (2007). Application of an ambient index for air quality management in greater Athens area, Greece. Proceedings of the International Conference on Environmental Management, Engineering, Planning and Economics, IV, 2459–2464.

    Google Scholar 

  • Papanastasiou, D. K., Melas, D., & Kioutsioukis, I. (2007). Development and Assessment of Neural Network and Multiple Regression Models in Order to Predict PM10 Levels in a Medium-sized Mediterranean City. Water Air Soil Pollution, 182, 325–334.

    Article  CAS  Google Scholar 

  • Perez, P., Trier, A., & Reyes, J. (2000). Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment, 34, 1189–1196.

    Article  CAS  Google Scholar 

  • Prybutok, R., Junsub, Y., & Mitchell, D. (2000). Comparison of neural network models with ARIMA and regression models for prediction of Huston’s daily maximum ozone concentrations. European Journal of Operational Research, 122, 31–40.

    Article  Google Scholar 

  • Ruiz-Suarez, J. C., Mayora-Ibarra, O. A., Torres-Jimenez, J., & Ruiz-Suarez, L. G. (1995). Short-term ozone forecasting by artificial neural network. Advances in Engineering Softwear, 23, 143–1498.

    Article  Google Scholar 

  • Schlink, U., Dorling, S., Pelikan, E., Nunnari, G., Cawley, G., Junninen, H., et al. (2003). A rigorous inter-comparison of ground-level ozone predictions. Atmospheric Environment, 37, 3237–3253.

    Article  CAS  Google Scholar 

  • Schwartz, J. (1996). Air pollution and hospital admissions for respiratory disease. Epidemiology, 7, 20–28.

    Article  CAS  Google Scholar 

  • Schwartz, J., & Dockery, D. W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. American Review of Respiratory Disease, 145, 600–604.

    CAS  Google Scholar 

  • Shi, J. P., & Harrison, R. M. (1997). Regression modeling of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 31, 4081–4094.

    Article  CAS  Google Scholar 

  • Simpson, R. W., & Layton, A. P. (1983). Forecasting peak ozone levels. Atmospheric Environment, 17, 1649–1654.

    Article  CAS  Google Scholar 

  • Slini, T., Kaprara, A., Karatzas, K., & Moussiopoulos, N. (2006). PM10 Forecasting for Thessaloniki, Greece. Environmental Modeling and Software, 21, 559–565.

    Article  Google Scholar 

  • Tiittanen, P., Timonen, K. L., Ruuskanen, J., Mirme, A., & Pekkanen, J. (1999). Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. European Respiratory Journal, 13, 266–273.

    Article  CAS  Google Scholar 

  • Touloumi, G., Pocock, S. J., Katsouyianni, K., & Trichopoulos, D. (1994). Short term effects of air pollution on daily mortality in Athens. A time series analysis. International Journal of Epidemiology, 23, 957–967.

    CAS  Google Scholar 

  • Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modeling, 148, 27–46.

    Article  CAS  Google Scholar 

  • Vlachogianni, A., & Kassomenos, P. (2007). One day ahead prediction of morning max CO concentration in Athens, Greece. Proceedings of the International Conference on Environmental Management, Engineering, Planning and Economics, IV, 2411–2416.

    Google Scholar 

  • Werbosk, P. (1988). Generalization of Backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339–356.

    Article  Google Scholar 

  • Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., et al. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90, 8995–9005.

    Article  Google Scholar 

  • Yang, C. Y., Chang, C. C., Chuang, H. Y., Tsai, S. S., Wu, T. N., & Ho, C. K. (2004). Relationship between air pollution and daily mortality in a subtropical city: Taipei Taiwan. Environment International, 30, 519–523.

    Article  CAS  Google Scholar 

  • Yi, J., & Prybutok, V. R. (1996). A neural network model forecasting for prediction fo daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92, 349–357.

    Article  CAS  Google Scholar 

  • Ziomas, I. C., Melas, D., Zerefos, C. S., & Bais, A. F. (1995). On the relationship between peak ozone levels and meteorological variables. Fresenius Environmental Bulletin, 4, 53–58.

    CAS  Google Scholar 

  • Ziomas, I. C., Melas, D., Zerefos, C. S., Paliatsos, A. G., & Bais, A. F. (1995). Forecasting peak pollutant levels using meteorological variables and Indexes. Atmospheric Environment, 29, 3703–3711.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos P. Moustris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustris, K.P., Ziomas, I.C. & Paliatsos, A.G. 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water Air Soil Pollut 209, 29–43 (2010). https://doi.org/10.1007/s11270-009-0179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0179-5

Keywords

Navigation