Skip to main content
Log in

Enhanced Biodegradation of Used Engine Oil in Soil Amended with Organic Wastes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Three organic wastes (banana skin (BS), brewery spent grain (BSG), and spent mushroom compost (SMC)) were used for bioremediation of soil spiked with used engine oil to determine the potential of these organic wastes in enhancing biodegradation of used oil in soil. The rates of biodegradation of the oil were studied for a period of 84 days under laboratory conditions. Hydrocarbon-utilizing bacterial counts were high in all the organic waste-amended soil ranging between 10.2 × 106 and 80.5 × 106 CFU/g compared to unamended control soil throughout the 84 days of study. Oil-contaminated soil amended with BSG showed the highest reduction in total petroleum hydrocarbon with net loss of 26.76% in 84 days compared to other treatments. First-order kinetic model revealed that BSG was the best of the three organic wastes used with biodegradation rate constant of 0.3163 day−1 and half-life of 2.19 days. The results obtained demonstrated the potential of organic wastes for oil bioremediation in the order BSG > BS > SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adegoroye, G. (1997). Environmental considerations in property design, urban development and renewal. In O. Akinjide (Ed.), Dimensions of environmental problems in Nigeria (pp. 12–25). Washington: Friedrich Ebert Foundation.

    Google Scholar 

  • Adelowo, O. O., Alagbe, S. O., & Ayandele, A. A. (2006). Time-dependent stability of used engine oil degradation by cultures of Pseudomonas fragi and Achromobacter aerogens. African Journal of Biotechnology, 5(24), 2476–2479.

    CAS  Google Scholar 

  • Adesodun, J. K., & Mbagwu, J. S. C. (2008). Biodegradation of waste lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresource Technology, 99, 5659–5665.

    Article  CAS  Google Scholar 

  • Ahn, Y. H., Sanseverino, J., & Sayler, G. S. (1999). Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation, 10, 149–157.

    Article  CAS  Google Scholar 

  • Antai, S. P., & Mgbomo, E. (1989). Distribution of hydrocarbon utilizing bacteria in oil-spill areas. Microbiology Letters, 40, 137–143.

    Google Scholar 

  • ATSDR. (1997). Public health statements: Used mineral based crankcase oil. Atlanta: ATSDR.

    Google Scholar 

  • Bento, F. M., Camargo, F. O. A., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (2000). Degradation and mineralization of high-molecular weight polycyclic aromatic hydrocarbons by defined fungal–bacterial co-cultures. Applied Environmental Microbiology, 66(3), 1007–1019.

    Article  CAS  Google Scholar 

  • Brook, T. R., Stiver, W. H., & Zytner, R. G. (2001). Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil Sediment Contamination, 10, 539–553.

    Article  CAS  Google Scholar 

  • Butler, C. S., & Mason, J. R. (1997). Structure–function analysis of the bacterial aromatic ring–hydroxylating dioxygenases. Advanced Microbial Physiology, 38, 47–84.

    Article  CAS  Google Scholar 

  • Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from North–East India. Bioresource Technology, 98, 1339–1345.

    Article  CAS  Google Scholar 

  • Edewor, T. I., Adelowo, O. O., & Afolabi, T. J. (2004). Preliminary studies into the biological activities of a broad spectrum disinfectant formulated from used engine oil. Pollution Research, 23(4), 581–586.

    CAS  Google Scholar 

  • Faboya, O. O. P. (1997). Industrial pollution and waste management. In O. Akinjide (Ed.), Dimensions of environmental problems in Nigeria (pp. 12–25). Washington: Friedrich Ebert Foundation.

    Google Scholar 

  • Hagwell, I. S., Delfino, L. M., & Rao, J. J. (1992). Partitioning of polycyclic aromatic hydrocarbons from oil into water. Environmental Science and Technology, 26, 2104–2110.

    Article  Google Scholar 

  • Hollender, J., Althoff, K., Mundt, M., & Dott, W. (2003). Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects on contaminants using a simple respiration test. Chemosphere, 53, 269–275.

    Article  CAS  Google Scholar 

  • Husaini, A., Roslan, H. A., Hii, K. S. Y., & Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24, 2789–2797.

    Article  CAS  Google Scholar 

  • Ijah, U. J. J. (1998). Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil. Waste Management, 18, 293–299.

    Article  CAS  Google Scholar 

  • Ijah, U. J. J., & Antai, S. P. (2003a). The potential use of chicken-drop microorganisms for oil spill remediation. The Environmentalist, 23, 89–95.

    Article  Google Scholar 

  • Ijah, U. J., & Antai, S. P. (2003b). Removal of Nigerian light crude oil in soil over a 12 month period. International Biodeterioration and Biodegradation, 51, 93–99.

    Article  CAS  Google Scholar 

  • Joo, H. S., Phae, C. G., & Ryu, J. Y. (2001). Comparison and analysis on characteristics for recycling of multifarious food waste. J KOWREC, 9, 117–124.

    Google Scholar 

  • Joo, H. S., Shoda, M., & Phae, C. G. (2007). Degradation of diesel oil in soil using a food waste composting process. Biodegradation, 18, 597–605.

    Article  Google Scholar 

  • Jørgensen, K. S., Puustinen, J., & Suortti, A. M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107, 245–254.

    Article  Google Scholar 

  • Keith, L. H., & Telliard, W. A. (1979). Priority pollutants 1—A perspective view. Environmental Science and Technology, 13, 416–423.

    Article  Google Scholar 

  • Kyung-Hwa, B., Byung-Dae, Y., Hee-Mock, O., Hee-Sik, K., & In-Sook, L. (2006). Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiology Journal, 23(5), 253–259.

    Article  CAS  Google Scholar 

  • Lloyd, C. A., & Cackette, T. A. (2001). Diesel engines: Environmental impact and control. Air and Waste Management Association, 51, 805–847.

    Google Scholar 

  • Majid, Z., Mnouchehr, V., & Sussan, K. A. (2008). Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH 1, a moderately thermophilic microorganism. Chemosphere, 72, 905–909.

    Article  CAS  Google Scholar 

  • Mandri, T., & Lin, J. (2007). Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. African Journal of Biotechnology, 6(1), 23–27.

    CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an Alpine glacier skiing area. Applied and Environmental Microbiology, 67, 3127–3133.

    Article  CAS  Google Scholar 

  • Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40, 339–346.

    Article  CAS  Google Scholar 

  • Margesin, R., Hammerle, M., & Tscherko, D. (2007). Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microbiol Ecol, 53, 259–269.

    Article  CAS  Google Scholar 

  • Mishra, S. J., Jyot, R. C., & Kuhad, B. L. (2001). Evaluation of inoculum addition to stimulate in situ Bioremediation of oily–sludge-contaminated soil. Applied Environmental Microbiology, 67(4), 1675–1681.

    Article  CAS  Google Scholar 

  • Nakasaki, K., Yaguchi, H., Sasaki, Y., & Kubota, H. (1992). Effect of C/N ratio on thermophilic composting of garbage. Journal of Fermentation and Bioengineering, 73, 43–45.

    Article  CAS  Google Scholar 

  • Propst, T. L., Lochmiller, R. L., Qualis, C. W., & McBee, K., Jr. (1999). In situ (mesocosm) assessment of immune-toxicity risks to small mammals inhabiting petrochemical waste sites. Chemosphere, 38, 1049–1067.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., & Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air & Soil Pollution, 170, 3–15.

    Article  CAS  Google Scholar 

  • Semple, K. T., Dew, N. M., Doick, K. J., & Rhodes, A. H. (2006). Can mineralization be used to estimate microbial availability of organic contaminants in soil? Environmental Pollution, 140, 164–172.

    Article  CAS  Google Scholar 

  • Tauscher, W. (1988). The option for re-cycling and re-utilizing used petroleum oils. Natural Resources Development, 28, 100–107.

    Google Scholar 

  • USEPA. (1996). Recycling used oil: What can you do? Cooperation Extension Services ENRI, 317, 1–2.

    Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Review, 67(4), 503–549.

    Article  CAS  Google Scholar 

  • Walworth, J., Pond, A., Snape, I., Rayner, J., Ferguson, S., & Harvey, P. (2007). Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Regions Science and Technology, 48, 84–91.

    Article  Google Scholar 

  • Yeung, P. Y., Johnson, R. L., & Xu, J. G. (1997). Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. Journal of Environmental Quality, 26, 1511–1576.

    Article  CAS  Google Scholar 

  • Zajic, E., & Supplission, B. (1972). Emulsification and degradation of “Banker C” fuel oil by microorganisms. Biotechnology and Bioengineering, 14, 331–343.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the University of Malaya IPPP Grant PS 244/2008C. Also, we would like to thank the managements of Carlsberg Brewery for providing brewery spent grain and Gano farm for the provision of spent mushroom compost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Abioye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abioye, P.O., Abdul Aziz, A. & Agamuthu, P. Enhanced Biodegradation of Used Engine Oil in Soil Amended with Organic Wastes. Water Air Soil Pollut 209, 173–179 (2010). https://doi.org/10.1007/s11270-009-0189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0189-3

Keywords

Navigation