Skip to main content
Log in

Kinetics of Lead Bioaccumulation from a Hydroponic Medium by Aquatic Macrophytes Pistia stratiotes

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The goal of this work was to study quantitatively lead bioaccumulation from a lead-doped nutrient medium by using a living aquatic macrophytes Pistia stratiotes. Several sets of aquatic plants with approximately 30 g weight were grown in greenhouse conditions and in hydroponic solutions supplied with a non-toxic Pb2+ concentration. The synchrotron radiation total X-ray fluorescence spectrometry was used to determine the metal concentrations in dry plants and hydroponic media as a function of time. Four different non-structural bioaccumulation models were applied to describe the process dynamics and to estimate the accumulated lead maximum capacity and rate constants. According to the experimental data, both biosorption and bioaccumulation mechanisms can be considered. Due to the low desorption rate constant, the experimental data were well described by the irreversible kinetic model. The results concerning modeling of living macrophytes’ metal bioaccumulation kinetics can be used to predict the heavy metal removal dynamics from wastewaters in artificial wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aiginger, H., & Wobrauschek, P. (1974). A method for quantitative X-ray fluorescence analysis in the nanogram region. Nuclear Instruments and Methods, 114, 157–158. doi:10.1016/0029–554X(74)90352-8.

    Article  CAS  Google Scholar 

  • Blázquez, G., Hernáinz, F., Calero, M., & Ruiz-Núñez, L. F. (2005). Removal of cadmium ions with olive stones: the effect of some parameters. Process Biochemistry, 40, 2649–2654. doi:10.1016/j.procbio.2004.11.007.

    Article  Google Scholar 

  • Borgmann, U., Norwood, W. P., & Dixon, D. G. (2004). Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Environmental Pollution, 131, 469–484. doi:10.1016/j.envpol.2004.02.010.

    Article  CAS  Google Scholar 

  • Clark, R. B. (1975). Characterization of phosphates in intact maize roots. Journal of Agricultural and Food Chemistry, 23, 458–460. doi:10.1021/jf60199a002.

    Article  CAS  Google Scholar 

  • Cruz, C. C. V., Costa, A. C. A., Henriques, C. A., & Luna, A. S. (2004). Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technology, 91, 249–257. doi:10.1016/S0960-8524(03)00194-9.

    Article  CAS  Google Scholar 

  • Espinoza-Quiñones, F. R., Zacarkim, C. E., Palácio, S. M., Obregón, C. L., Zenatti, D. C., Galante, R. M., Rossi, N., Rossi, F. L., Pereira, I. R. A., & Welter, R. A. (2005). Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Brazilian Journal of Physics, 35, 744–746.

    Google Scholar 

  • Georgieva, N. (2008). Growth of Trichosporon cutaneum R 57 in the presence of toxic concentration of cadmium and copper. International Journal of Agriculture & Biology, 10(3), 325–328.

    CAS  Google Scholar 

  • Hadad, H. R., Maine, M. A., & Bonetto, C. A. (2006). Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63, 1744–1753. doi:10.1016/j.chemosphere.2005.09.014.

    Article  CAS  Google Scholar 

  • Hashim, M. A., & Chu, K. H. (2004). Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 97, 249–295. doi:10.1016/S1385-8947(03)00216-X.

    Article  CAS  Google Scholar 

  • Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Kim, S. G., Jee, J. H., & Kang, J. C. (2004). Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environmental Pollution, 127, 117–123. doi:10.1016/S0269-7491(03)00254-9.

    Article  CAS  Google Scholar 

  • Lodeiro, P., Cordeiro, B., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2005). Biosorption of cadmium by biomass of brown marine macroalgae. Bioresource Technology, 96, 1796–1803. doi:10.1016/j.biortech.2005.01.002.

    Article  CAS  Google Scholar 

  • Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57, 997–1005. doi:10.1016/j.chemosphere.2004.07.024.

    Article  CAS  Google Scholar 

  • Pérez, C. A., Radtke, M., Sánchez, H. J., Tolentino, H., Neuenshwander, R. T., Barg, W., Rubio, M., Bueno, M. I. S., Raimundo, I. M., & Rohwedder, J. J. R. (1998). Synchrotron radiation X-ray fluorescence at the LNLS: beamline instrumentation and experiments. X-Ray Spectrometry, 28, 320–326. doi:10.1002/(SICI)1097-4539(199909/10)28:5<320::AID-XRS359>3.0.CO;2-1.

    Article  Google Scholar 

  • Pettersson, R. P., & Olsson, M. (1998). A nitric acid–hydrogen peroxide digestion method for trace element analysis of milligram amounts of plankton and periphyton by total-reflection X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 13, 609–613. doi:10.1039/a708575c.

    Article  CAS  Google Scholar 

  • Salvador, M. J., Moreira, S., Dias, D. A., & Zucchi, O. L. A. D. (2004). Determination of trace elements in Alternanthera brasiliana and Pfaffia glabrata by SRTXRF: application in environmental pollution control. Instrumentation Science & Technology, 32, 321–333. doi:10.1081/CI-120030545.

    Article  CAS  Google Scholar 

  • Schmitt, D., Müller, A., Csögör, Z., Frimmel, H. F., & Posten, C. (2001). The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Research, 35, 779–785. doi:10.1016/S0043-1354(00)00317-1.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Gaur, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy metals. Ecological Engineering, 4, 37–43. doi:10.1016/0925-8574(94)00047-9.

    Article  Google Scholar 

  • Simabuco, S. M., & Matsumoto, E. (2000). Synchrotron radiation total reflection for rain water analysis. Spectrochimica Acta B, 55, 1173–1179. doi:10.1016/S0584-8547(00)00158-0.

    Article  Google Scholar 

  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.

    Article  Google Scholar 

  • Terry, A. P., & Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47, 249–255. doi:10.1016/S0045-6535(01)00303-4.

    Article  CAS  Google Scholar 

  • Van Espen, P., Janssens, K., & Swenters, I. (1986). AXIL X-ray analysis software. Zellik: Canberra Packard Benelux.

    Google Scholar 

  • Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301–316.

    Article  CAS  Google Scholar 

  • Yan, G., & Viraraghavan, T. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37, 4486–4496.

    Article  CAS  Google Scholar 

  • Yoneda, Y., & Horiuchi, T. (1971). Optical flats for use in X-ray spectrochemical micro-analysis. Review of Scientific Instruments, 42, 169–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge The Brazilian Light Synchrotron Laboratory (LNLS) for partial financial support of this study through the 6718 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando R. Espinoza-Quiñones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza-Quiñones, F.R., Módenes, A.N., Costa, I.L. et al. Kinetics of Lead Bioaccumulation from a Hydroponic Medium by Aquatic Macrophytes Pistia stratiotes . Water Air Soil Pollut 203, 29–37 (2009). https://doi.org/10.1007/s11270-009-9989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-9989-8

Keywords

Navigation