Skip to main content

Advertisement

Log in

Influence of Catchment Characteristics and Flood Type on Relationship Between Streamwater Chemistry and Streamflow: Case Study from Carpathian Foothills in Poland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 , SO 2−4 , and Cl), and nutrients (NH +4 , NO 2 , NO 3 , and PO 3−4 ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH +4 were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 3−4 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brown, V. A., McDonnell, J. J., Burns, D. A., & Kendall, C. (1999). The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. Journal of Hydrology, 217, 171–190.

    Article  Google Scholar 

  • Buttle, J. M. (1994). Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography, 18, 16–41.

    Article  Google Scholar 

  • Caissie, D., Pollock, T. L., & Cunjak, R. A. (1996). Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology, 178, 137–157.

    Article  Google Scholar 

  • Chełmicki, W. (2005). Dynamika odpływu. In M. Żelazny (Ed.), Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim (pp. 47–54). Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.

    Google Scholar 

  • Dingman, S. L. (2002). Physical hydrology. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Evans, Ch, & Davies, T. D. (1998). Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research, 34(1), 129–137.

    Article  CAS  Google Scholar 

  • Foster, I. D. L. (1978). A multivariate model of storm-period solute bahaviour. Journal of Hydrology, 39, 339–353.

    Article  Google Scholar 

  • Gburek, W. J., & Folmar, G. J. (1999). Flow and chemical contributions to streamflow in an upland watershed: a baseflow survey. Journal of Hydrology, 217(1–2), 1–18.

    Article  CAS  Google Scholar 

  • Hill, A. R. (1993). Base cation chemistry of storm runoff in a forested headwater wetland. Water Resources Research, 29(8), 2663–2673.

    Article  CAS  Google Scholar 

  • Hoffman, A. R., Armstrong, D. E., Lathrop, R. C., & Penn, M. R. (2009). Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquatic Geochemistry, 15, 371–389.

    Article  CAS  Google Scholar 

  • Holloway, J. M., & Dahlgren, R. A. (2001). Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. Journal of Hydrology, 250, 106–121.

    Article  CAS  Google Scholar 

  • Hooper, R. P., Christophersen, N., & Peters, N. E. (1990). Modeling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, USA. Journal of Hydrology, 116, 321–343.

    Article  CAS  Google Scholar 

  • House, W. A., & Warwick, M. S. (1998). Hysteresis of the solute concentration/discharge relationship in rivers during storms. Water Research, 32(8), 2279–2290.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Withers, P. J. A., Hodgkinson, R., Bates, A., Neal, M., Wickham, H. D., et al. (2008). Influence of rural land use on streamwater nutrients and their ecological significance. Journal of Hydrology, 350, 166–186.

    Article  CAS  Google Scholar 

  • Johnson, A. H., Bouldin, D. R., Goyette, E. A., & Hedges, A. M. (1976). Phosphorus loss by stream transport from a rural watershed: quantities, processes, and sources. Journal of Environmental Quality, 5, 148–457.

    Article  CAS  Google Scholar 

  • Kane, D. L., & Stein, J. (1983). Water movement into seasonally frozen soils. Water Resources Research, 19, 1547–1557.

    Article  Google Scholar 

  • Lindstrom, G., Bishop, K., & Lofvenius, M. O. (2002). Soil frost and runoff at Svartberget, northern Sweden—measurements and model analysis. Hydrological Processes, 16, 3379–3392.

    Article  Google Scholar 

  • McDowell, R. W., & Sharpley, A. N. (2001). A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquatic Geochemistry, 7, 255–265.

    Article  CAS  Google Scholar 

  • Olewicz, Z. R. (1973). Tektonika jednostki bocheńskiej i brzegu jednostki śląskiej między Rabą a Uszwicą. Acta Geologica Polonica, 23(4), 701–761.

    Google Scholar 

  • Pearce, A. J. (1990). Streamflow generation processes: an Austral view. Water Resources Research, 26(12), 3037–3047.

    Google Scholar 

  • Pekarova, P., & Pekar, J. (1996). The impact of land use on stream water quality in Slovakia. Journal of Hydrology, 180, 333–350.

    Article  CAS  Google Scholar 

  • Piatek, K. B., Mitchell, M. J., Silva, S. R., & Kendall, C. (2005). Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate. Water, Air, and Soil Pollution, 165, 13–35.

    Article  CAS  Google Scholar 

  • Poor, C. J., & McDonnell, J. J. (2007). The effects of land use on stream nitrate dynamics. Journal of Hydrology, 332, 54–68.

    Article  Google Scholar 

  • Rose, S. (2003). Comparative solute-discharge hysteresis analysis for an urbanized and ‘control basin’ in the Georgia (USA) Piedmont. Journal of Hydrology, 284, 45–56.

    Article  CAS  Google Scholar 

  • Shanley, J. B., & Chalmers, A. (1999). The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrological Processes, 13, 1843–1857.

    Article  Google Scholar 

  • Sjøeng, A. M. S., Kaste, Ø., Tørseth, K., & Mulder, J. (2007). N leaching from small upland headwater catchments in Southwestern Norway. Water, Air, and Soil Pollution, 179, 323–340.

    Article  Google Scholar 

  • Skiba, S., Drewnik, M., Klimek, M., & Szmuc, R. (1998). Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica rivers. Prace Geograficzne IGUJ, 103, 125–135.

    Google Scholar 

  • Stahli, M., Jansson, P. E., & Lundin, L. C. (1996). Preferential water flow in a frozen soil—a two-domain model approach. Hydrological Processes, 10, 1305–1316.

    Article  Google Scholar 

  • Święchowicz, J. (2002). Linkage of slope wash and sediment and solute export from a foothill catchment in the Carpathian Foothills of South Poland. Earth Surface Processes and Landforms, 27(12), 1389–1413.

    Google Scholar 

  • Święchowicz, J., & Michno, A. (2005). Obszar badań. In M. Żelazny (Ed.), Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim (pp. 29–42). Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.

    Google Scholar 

  • Taylor, A. W., Edwards, W. M., & Simpson, E. C. (1971). Nutrients in streams draining woodland and farmland near Coshoton, Ohio. Water Resources Research, 7(1), 81–89.

    Article  CAS  Google Scholar 

  • Thornton, G. J. P., & Dise, N. B. (1998). The influence of catchment characteristics, agricultural activities and atmospheric deposition on the chemistry of small streams in the English Lake District. The Science of the Total Environment, 216, 63–75.

    Article  CAS  Google Scholar 

  • Toboła, T. (2000). Badania koncentracji potasu i magnezu w solach kamiennych złoża Bochni. Przeglad Geologiczny, 48(12), 1163–1168.

    Google Scholar 

  • Walling, D. E., & Foster, I. D. L. (1975). Variations in the natural chemical concentration of river water during flood flows, and the lag effect: some further comments. Journal of Hydrology, 26(3–4), 237–244.

    Article  CAS  Google Scholar 

  • Walling, D. E., & Webb, B. W. (1980). The spatial dimension in the interpretation of stream solute behaviour. Journal of Hydrology, 47(1–2), 129–149.

    Article  CAS  Google Scholar 

  • Wanielista, M., Kersten, R., & Eaglin, R. (1997). Hydrology: Water quantity and quality control. New York: Wiley.

    Google Scholar 

  • Webb, B. W., & Walling, D. E. (1985). Nitrate behaviour in streamflow from a grassland catchment in Devon, UK. Water Research, 19, 1005–1016.

    Article  CAS  Google Scholar 

  • Żelazny, M. (2005). Cechy fizykochemiczne wód podziemnych. In M. Żelazny (Ed.), Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim (pp. 167–175). Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.

    Google Scholar 

Download references

Acknowledgments

The research project was funded by the Polish Committee for Scientific Research (Project 3 P04G 050 22). The authors wish to thank anonymous reviewers for their critical comments and Grzegorz Zębik for his helpful advice and correction of the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna P. Siwek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siwek, J.P., Żelazny, M. & Chełmicki, W. Influence of Catchment Characteristics and Flood Type on Relationship Between Streamwater Chemistry and Streamflow: Case Study from Carpathian Foothills in Poland. Water Air Soil Pollut 214, 547–563 (2011). https://doi.org/10.1007/s11270-010-0445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0445-6

Keywords

Navigation