Skip to main content

Advertisement

Log in

Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review

  • Review Article
  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in wastewater effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatalytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal, and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarthi, T., & Madras, G. (2007). Photocatalytic degradation of Rhodamine yes with nano-TiO2. Industrial & Engineering Chemistry Research, 46, 7–14.

    Article  CAS  Google Scholar 

  • Aarthi, T., Narahari, P., & Madras, G. (2007). Photocatalytic degradation of Azure and Sudan dyes using nano TiO2. Journal of Hazardous Materials, 149, 725–734.

    Article  CAS  Google Scholar 

  • Abdullah, M., Low, G., & Mathews, R. W. (1990). Effects of common inorganic ions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. Journal of Physical Chemistry, 94, 6820.

    Article  CAS  Google Scholar 

  • Adan, C., Bahamonde, A., Fernandez-Garica, M., & Martinez-Arias, A. (2007). Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied catalysis B: Environmental, 72, 11–17.

    Article  CAS  Google Scholar 

  • Adesina. (2004). Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catalysis Surveys from Asia, 8(4), 265–273.

    Article  CAS  Google Scholar 

  • Alaton, I. A., & Balcioghu, I. A. (2001). Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: A cases study with hydrolysed Reactive black 5. Journal of Photochemistry and Photobiology A: Chemistry, 141, 247–254.

    Article  CAS  Google Scholar 

  • Alinsafi, A., Evenou, F., Abdulkarim, E. M., Pons, M. N., Zahraa, O., Benhammou, A., et al. (2007). Treatment of textile industry wastewater by supported photocatalysis. Dyes & Pigments, 74, 439–445.

    Article  CAS  Google Scholar 

  • Anandan, S., Satish Kumar, P., Pugazhenthiran, N., Mdhavan, J., & Maruthamuthu, P. (2008). Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Solar Energy Materials & Solar Cell, 92, 929–937.

    Article  CAS  Google Scholar 

  • Andronic, L., & Duta, A. (2007). TiO2 thin films for dyes photodegradation. Thin Solid Films, 515, 6294–6297.

    Article  CAS  Google Scholar 

  • Arabatzis, I. M., Stergiopoulos, T., Andreeva, D., Kitova, S., Neophytides, S. G., & Falaras, P. (2003). Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. Journal of Catalysis, 220, 127–135.

    Article  CAS  Google Scholar 

  • Arques, A., Amat, A. M., Garciýa-Ripoll, & Vicente, R. (2007). Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. Journal of Hazardous Materials, 146, 447–452.

    Article  CAS  Google Scholar 

  • Bahnemann, W., Muneer, M., & Haque, M. M. (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catalysis Today, 124, 133–148.

    Article  CAS  Google Scholar 

  • Baiju, K. V., Shajesh, P., Wunderlich, W., Mukundan, P., Kumar, S. R., & Warrier, K. G. K. (2007). Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol–gel derived mesoporous titania. Journal of Molecular Catalysis A: Chemical, 276, 41–46.

    Article  CAS  Google Scholar 

  • Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007). Photocatalytic degradation of an azo dye in atubular continuous-flow photoractor with immobilized TiO2 on glass plates. Chemical Engineering Journal, 127, 167–176.

    Article  CAS  Google Scholar 

  • Behnajady, M. A., Moghaddam, S. G., Modirshahla, N., & Shokri, M. (2009). Investigation of the effect of heat attachment method parameters at photocatalytic activity of immobilized ZnO nanoparticles on glass plate. Desalination. doi:10.1016/j.desal.2009.06.021.

    Google Scholar 

  • Bejarano-Perez, N. J., & Suarez-Herrera, M. F. (2007). Sonophotocatalytic degradation of Congo Red and Methyl Orange in the presence of TiO2 as a catalyst. Ultrasonics Sonochemistry, 14, 589–595.

    Article  CAS  Google Scholar 

  • Bellardita, M., Addamo, M., Paola, A. D., & Palmisano, L. (2007). Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chemicla Physiscs, 339, 94–103.

    Article  CAS  Google Scholar 

  • Bessekhouad, Y., Robert, D., Weber, J.-V., & Chaoui, N. (2004). Effect of alkaline-doped TiO2 on photocatalytic efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 167, 49–57.

    Article  CAS  Google Scholar 

  • Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environment, 73(1–2), 51–59.

    Article  CAS  Google Scholar 

  • Byrappa, K., Subramania, A. K., Ananda, S., Rai, K. M. L., Dinesh, R., & Yushimura, M. (2006). Photocatalytic degradation of Rodamine B dye using hydrothermally synthesized ZnO. Bulletin of Materials Science, 29(5), 433–438.

    Article  CAS  Google Scholar 

  • Calza, P., & Pelizzetti, E. (2001). Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Applied Chemistry, 73(12), 1839–1848.

    Article  CAS  Google Scholar 

  • Cassano, A. E., & Alfano, O. M. (2000). Reaction engineering of suspended solid heterogenous photocatalytic reactors. Catalysis Today, 58, 167–197.

    Article  CAS  Google Scholar 

  • Chan, C.-C., Chang, C.-C., Hsu, W.-C., Wang, S.-K., & Lin, J. (2009). Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal, 152, 492–497.

    Article  CAS  Google Scholar 

  • Chen, Y.-C., & Smirniotis, P. (2002). Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Industrial & Engineering Chemistry Research, 41(24), 5958–5965.

    Article  CAS  Google Scholar 

  • Chen, L.-C., Huang, C.-M., & Tsai, F.-R. (2007). Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts. Journal of Molecular Catalysis A: Chemical, 265, 133–140.

    Article  CAS  Google Scholar 

  • Chen, R.-F., Zhang, C.-X., Deng, J., & Song, G.-Q. (2009). Preparation and photocatalytic activity of Cu2+-doped TiO2/SiO2. International Journal of Minerals, Metallurgy and Materials, 16(2), 220–225.

    Article  CAS  Google Scholar 

  • Chiou, C.-H., & Juang, R.-H. (2007). Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. Journal of Hazardous Materials, 149, 1–7.

    Article  CAS  Google Scholar 

  • Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008a). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 139, 322–329.

    Article  CAS  Google Scholar 

  • Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008b). Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Separation and Purification Technology, 62, 559–564.

    Article  CAS  Google Scholar 

  • Coleman, H. M., Chiang, K., & Amal, R. (2005). Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chemical Engineering Journal, 113, 65–72.

    Article  CAS  Google Scholar 

  • Cun, W., Zhao, J., Xinming, W., Bixian, M., Guoying, S., An, P. P., et al. (2002). Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysis. Applied Catalysis B; Environmental, 39, 269–279.

    Article  Google Scholar 

  • Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye Acid Red 14 in water: Investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A, 157, 111–116.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A, 162, 317–322.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., Niaei, A., & Khataee, A. R. (2006). Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics. Journal of Environmental Science and Health B, 41, 1273–1290.

    CAS  Google Scholar 

  • Daneshvar, N., Rasoulifard, M. H., Khataee, A. R., & Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nano powder. Journal of Hazardous Materials, 143, 95–101.

    Article  CAS  Google Scholar 

  • DEC (Department of Environment Conservation). (2006). Managing urban stormwater: harvesting and reuses, NSW, DEC2006/137

  • DEH (Department of Environment and Heritage). (2002). Introduction to urban stormwater management in Australia, prepared under the stormwater initiative of the living cities PROGRAM 2002

  • Doll, T. E., & Frimmel, F. H. (2005). Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Research, 39, 403–411.

    Article  CAS  Google Scholar 

  • Echavia, R. G. M., Matzusawa, F., & Negishi, N. (2009). Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere, 76, 595–600.

    Article  CAS  Google Scholar 

  • Epling, G. A., & Lin, C. (2002). Investigation of retardation effects on the titanium dioxide photo degradation system. Chemosphere, 46, 937–944.

    Article  CAS  Google Scholar 

  • Eriksson, E., Baun, A., Mikkelsen, P. S., & Ledin, A. (2007). Risk assessment of xenobiotics in stormwater discharged to Harrestup Ao, Denmark. Desalination, 215(2007), 187–197.

    Article  CAS  Google Scholar 

  • Faisal, M., Tariq, M. A., & Muneer, M. (2007). Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes and Pigments, 72, 233–239.

    Article  CAS  Google Scholar 

  • Fernando, J., Beltrán, F., Rivas, J., & Gimeno, O. (2005). Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. Journal of Chemical Technology and Biotechnology, 80, 973–984.

    Article  CAS  Google Scholar 

  • Galindo, C., Jaques, P., & Kalt, A. (2000). Photodegradation of the amino-azobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and Vis/TiO2 comparative mechanistic and kinetic investigations. Journal of Photochemistry and Photobiology A: Chemistry, 130, 35–47.

    Article  CAS  Google Scholar 

  • Garcia, A., Amat, A. M., Arques, A., Sanchis, R., Gernjak, W., Maldonado, M. I., et al. (2006). Detoxification of aqueous solution of herbicide “Sevnol” by solar photocatalysis. Environmental Chemistry Letters, 3, 169–172.

    Article  CAS  Google Scholar 

  • Garcia, A., Arques, A., Vicente, R., Domenech, A., & Amat, A. M. (2008). Treatment of aqueous solutions containing four commercial pesticides by means of TiO2 solar photocatalysis. Journal of Solar Energy Engineering, 130, 041011–041015.

    Article  CAS  Google Scholar 

  • Garcýa, A., Amat, A. M., Arques, A., Vicente, R., López, M. F., & Oller, I. (2007). Increased biodegradability of Ultracide in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, 68, 293–300.

    Article  CAS  Google Scholar 

  • Ghasemia, S., Rahimnejada, S. R., Setayesha, S. R., & Gholamia, M. R. (2009). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.08.029.

    Google Scholar 

  • Gonzalez, A. S., & Martinez, S. S. (2008). Study of the photocatalytic degradation of Basic Blue 9 in industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonic Sonochemistry, 15, 386–392.

    Article  CAS  Google Scholar 

  • Gorska, P., Zaleska, A., & Hupka, J. (2009a). Photodegradation of phenol by UV/TiO2 and Vis/N, C-TiO2 process: Comparative mechanistic and Kinetic Studies. Separation and Purification Technology, 68, 90–96.

    Article  CAS  Google Scholar 

  • Gorska, P., Zaleska, A., Kowalska, E., Klimczuk, T., Sobczak, J. W., Skwarek, E., et al. (2009b). TiO2 photoactivity in vis and UV light: The influence of calcinations temperature and surface properties. Applied catalysis B: Environmental, 84, 440–447.

    Article  CAS  Google Scholar 

  • Goslich, R., Dillert, R., & Bahnemann, D. (1997). Solar water treatment principles and reactors. Water Science and Technology, 35(4), 137–148.

    Article  CAS  Google Scholar 

  • Goswami, D. Y. (1997). A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. Journal of Solar Energy Engineering, 119, 101–107.

    Article  CAS  Google Scholar 

  • Grzechulska-Damszel, J., Tomaszewska, M., & Morawski, A. W. (2009). Integration of photocatalysis with membrane processes purification of water contaminated with organic dyes. Desalination, 241, 118–126.

    Article  CAS  Google Scholar 

  • Guettaý, N., & Ait Amar, H. (2005). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination, 185, 439–448.

    Article  CAS  Google Scholar 

  • Guillard, C., Disdier, J., Herrmann, J. M., Lehaut, C., Chopin, T., Malato, S., et al. (1999). Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catalysis Today, 54, 217–228.

    Article  CAS  Google Scholar 

  • Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E., & Herrman, J.-M. (2003). Influence of chemical structure of dyes of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27–36.

    Article  CAS  Google Scholar 

  • Gupta, A. K., Pal, A., & Sahoo, C. (2006). Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag-C doped TiO2. Dyes and Pigments, 69, 224–232.

    Article  CAS  Google Scholar 

  • Haque, M., & Muneer, M. (2007). TiO2-mediated photocatalytic degradation of a textile dyederivative, Bromothymol Blue, in aqueous suspensions. Dyes and Pigments, 75, 443–448.

    Article  CAS  Google Scholar 

  • Hermann, J. M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115–129.

    Article  Google Scholar 

  • Hincapie, M., Peñuela, P. G., Maldonado, M. I., Malato, O., Fernández-Ibáñez, P., & Oller, I. (2006). Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environment, 64, 272–281.

    Article  CAS  Google Scholar 

  • Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., & Wu, J. (2008). Photocatalytic discolorization of Methyl Orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 77, 327–334.

    Article  CAS  Google Scholar 

  • Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., & Ohta, K. (2004). Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of photochemistry and photobiology A: Chemistry, 163, 419–424.

    Article  CAS  Google Scholar 

  • Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., & Matsuzawz, S. (2005). Photocatalytic degradation of gaseous sulphur compounds by silver-deposited titanium dioxide. Applied Catalysis B: Environmental, 57, 109–115.

    Article  CAS  Google Scholar 

  • Khataee, A. R., Pons, M. N., & Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of Hazardous Materials, 168, 451–457.

    Article  CAS  Google Scholar 

  • Kirilov, M., Koumanova, L., Spasov, L., & Petrov. (2006). Effects of Ag and Pd modifications of TiO2 on the photocatalytic degradation of p-chlorophenol in aqueous solution. Journal of the University of Chemical Technology and Metallurgy, 41(3), 343–348.

    CAS  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2003). Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Applied Catalysis B: Environmental, 42, 319–335.

    Article  CAS  Google Scholar 

  • Kositzi, M., Poulios, I., Samara, K., Tsatsaroni, E., & Darakas, E. (2007). Photocatalytic oxidation of Cibacron Yellow LS-R. Journal of Hazardous Materials, 146, 680–685.

    Article  CAS  Google Scholar 

  • Lachheb, H., Houas, A., & Herrmann, J.-M. (2008). Photocatalytic degradation of polynitrophenols on various commercial suspended or deposited tiatania catalyst using artificial and solar light. International Journal of Photoenergy, Article ID 497895. doi:1155/2008/497895

  • Lee, M. S., Lee, G.-D., Park, S. S., Ju, C.-S., Lim, K. T., & Hong, S.-S. (2005). Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon-dioxide microemulsion and their photocatalytic activity. Research of Chemical Intermediates, 31(4), 379–389.

    Article  Google Scholar 

  • Lee, S., Yun, C. Y., Hahn, M. S., Lee, J., & Yi, J. (2008). Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst. Korean Journal of Chemical Engineering, 25(4), 892–896.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical for water treatment. Chemical Reviews, 93, 671–698.

    Article  CAS  Google Scholar 

  • Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., & Maier, W. F. (2001). Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental, 32, 215–227.

    Article  CAS  Google Scholar 

  • Li, L., Zhu, W., Zhang, P., Chen, Z., & Han, W. (2003). Photocatalytic oxidation and ozonation of catechol over Carbon-Black-modified nano-TiO2 thin films supported on Al sheet. Water Research, 37, 3646–3651.

    Article  CAS  Google Scholar 

  • Lim, S. H., Ferrarisa, C., Schreyera, M., Shihc, K., Leckiec, J., & White, T. J. (2007). The influence of cobalt doping on photocatalytic nano-titania: Crystal chemistry and amorphicity. Journal of Solid State Chemistry, 180, 2905–2915.

    Article  CAS  Google Scholar 

  • Lin, C., & Lin, K. (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere, 66, 1872–1877.

    Article  CAS  Google Scholar 

  • Liqiang, J., Xiaojun, S., Baifu, X., Baiqi, W., Weimin, C., & Hongganga, F. (2004). The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. Journal of Solid State Chemistry, 177, 3375–3382.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, X., Li, J., & Burda, C. (2005). Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nano catalysts. Chemosphere, 61, 11–18.

    Article  CAS  Google Scholar 

  • Liu, J., Qin, W., Zuo, S., Yu, Y., & Hao, Z. (2009). Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania. Journal of Hazardous Materials, 163, 273–278.

    Article  CAS  Google Scholar 

  • Lu, A., Li, Y., Lv, M., Wang, C., Yang, L., Liu, J., et al. (2007). Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light. Solar Energy Materials & Solar Cells, 91, 849–1855.

    Google Scholar 

  • Mahmoodi, N. M., & Arami, M. (2009). Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology B: Biology, 94, 20–24.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Armani, M., Lymaee, N. Y., & Gharanjig, K. (2007). Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. Journal of Hazardous Materials, 145(1-2), 65–71.

    Article  CAS  Google Scholar 

  • Mahvi, A. H., Ghanbarian, M., Nasseri, S., & Khairi, A. (2009). Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination, 239(2009), 309–316.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A. R., Agüera, A., & Rodŕiguez, A. (2002). Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 76, 209–220.

    Article  CAS  Google Scholar 

  • Maldonado, M. I., Passarinho, P. C., Oller, I., Gernjak, W., Fernández, P., & Blanco, J. (2007). Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 185, 354–363.

    Article  CAS  Google Scholar 

  • Martinez, A. I., Acosta, D. R., & Cedillo, G. (2005). Effect of SnO2 on the photocatalytic properties of TiO2 films. Thin Solid Films, 490, 118–123.

    Article  CAS  Google Scholar 

  • Mathews, R. W. (1986). Photooxidation of organic material in aqueous suspensions of titanium dioxide. Water Research, 20(5), 569–578.

    Article  Google Scholar 

  • McMurray, T. A., Dunlop, P. S. M., & Byrne, J. A. (2006). The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 182, 43–51.

    Article  CAS  Google Scholar 

  • Mitchell, V. G., Mein, R. G., & Mcmahon, T. A. (2002). Utilising storm water and wastewater resources in urban areas. Australian Journal of Water Resources, 6, 31–43.

    Google Scholar 

  • Moctezumaa, E., Leyva, E., Palestino, G., & Lasa, H. D. (2007). Photocatalytic degradation of methyl parathion: Reaction pathways and intermediate reaction products. Journal of Photochemistry and Photobiology A: Chemistry, 186, 71–84.

    Article  CAS  Google Scholar 

  • Mohammad, M. M., & Al-Esaimi, M. M. (2006). Characterization, adsorption and photocatalytic activity of V-doped TiO2 and sulphated TiO2 (rutile) catalysts: Degradation of Methylene Blue dye. Journal of Molecular Catalysis: Chemical, 255, 53–61.

    Article  CAS  Google Scholar 

  • Mozia, S., Morawski, A. W., Toyoda, M., & Tsumura, T. (2009). Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination. doi:10.1016/j.desal.2009.06.075.

    Google Scholar 

  • Mrowetz, Pirola, M. C., & Selli, E. (2005). Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrasonics Sonochemistry, 10, 247.

    Article  CAS  Google Scholar 

  • Mukherjee, P. S., & Ray, A. K. (1999). Major challenges in the design of a large scale photocatalytic reactor for water treatment. Chemical Engineering Technology, 22, 253–260.

    Article  CAS  Google Scholar 

  • Muruganandham, M., & Swaminathan, M. (2004). Solar photocatalytic degradation of a reactive Azo dye in TiO2-suspension. Solar Energy Materials & Solar Cells, 81, 439–457.

    Article  CAS  Google Scholar 

  • Muruganandham, M., & Swaminathan, M. (2006a). Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dyes and Pigments, 68, 133–142.

    Article  CAS  Google Scholar 

  • Muruganandham, M., & Swaminathan, M. (2006b). TiO2–UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. Journal of Hazardous Materials, B135, 78–86.

    Article  CAS  Google Scholar 

  • Muruganandham, M., Shobana, N., & Swaminathan, M. (2006). Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2. Journal of Molecular Catalysis A: Chemical, 246, 154–161.

    Article  CAS  Google Scholar 

  • Naeem, K., & Feng, O. (2008). Parameters effect on heterogenous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Science, 21, 527–533.

    Google Scholar 

  • Naeem, K., & Ouyang, F. (2009). Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity. Physica B: Condensed Matter, 405(1), 221–226.

    Article  CAS  Google Scholar 

  • Nikazor, M., Gholivand, K., & MahanPoor, K. (2008). Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination, 219, 293–300.

    Article  CAS  Google Scholar 

  • Oller, I., Gernjak, W., Maldonado, M. I., Pérez-Estrada, L. A., Sánchez-Pérez, J. A., & Malato, S. (2006). Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. Journal of Hazardous Materials, B138, 507–517.

    Article  CAS  Google Scholar 

  • Ollis, D. F., Pelizzetti, E., & Serpone, N. (1991). Photocatalyzed destruction of water contaminants. Environmental Science and Technology, 25(9), 1522–1529.

    Article  CAS  Google Scholar 

  • Oyama, T., Yanagisawa, I., Takeuchi, M., Koike, T., Serpone, N., & Hidaka, H. (2009). Remediation of simulated aquatic sites contaminated with recalcitrant substrates by TiO2/ozonation under natural sunlight. Applied Catalysis B: Environmental, 91, 242–246.

    Article  CAS  Google Scholar 

  • Papadam, T., Xekoukoulotakis, N. P., Poulios, I., & Mantzavinos, D. (2007). Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 186, 308–315.

    Article  CAS  Google Scholar 

  • Pare, B., Jonnalagadda, S. B., Tomar, H., Singh, P., & Bhagwat, V. W. (2008). ZnO assisted photocatalytic degradation of Acridine Orange aqueous solution using visible irradiation. Desalination, 232, 80–90.

    Article  CAS  Google Scholar 

  • Pareek, V., Chong, S., Tade, M., & Adesina, A. (2008). Light intensity distribution in heterogeneous photocatalytic reactors. Asia-Pacific Journal of Chemical Engineering, 3, 171–201.

    Article  CAS  Google Scholar 

  • Parida, K. M., & Sahu, N. (2008). Visible light induced photocatalytic activity of rare earth titania nanocomposites. Journal of Molecular Catalysis A: Chemical, 287, 151–158. 2008.

    Article  CAS  Google Scholar 

  • Parida, K. M., Dash, S. S., & Das, D. P. (2006). Physico-chemical characterization and photocatalytic activity of zinc oxide presented by various methods. Journal of Colloid and Interface Science, 298, 787–793.

    Article  CAS  Google Scholar 

  • Pecchi, G., Reyes, P., Sanhueza, P., & Villasensor, J. (2001). Photocatalytic degradation of pentachlorophenol on TiO2 sol–gel catalysts. Chemosphere, 43, 141–146.

    Article  CAS  Google Scholar 

  • Peng, T., Zhaoa, D., Song, H., & Yan, C. (2005). Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 238, 119–126.

    Article  CAS  Google Scholar 

  • Porter, J. E., Li, Y., & Cahn, C. K. (1999). The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P25 TiO2. Journal of Materials Science, 34, 1523–1531.

    Article  CAS  Google Scholar 

  • Qamar, M., Saquib, M., & Muneer, M. (2004). Semicondcutor-mediated photocatalytic degradation of an azo dye, chrysoidine Y in aqueous suspensions. Desalination, 171, 185–193.

    Article  CAS  Google Scholar 

  • Qamar, M., Saquib, M., & Muneer, M. (2005a). Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions. Desalination, 186, 255–271.

    Article  CAS  Google Scholar 

  • Qamar, M., Saquib, M., & Muneer, M. (2005b). Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and Amido Black 10B, in aqueous suspensions of titanium dioxide. Dyes and Pigments, 6, 1–9.

    Article  CAS  Google Scholar 

  • Qu, Y., Song, S., Jing, L., Luan, Y., & Fu, H. (2009). Effects of the co-addition of Zn2+ and sodium dodecylbenzenesulfonate on photocatalytic activity and wetting performance of anatase TiO2 nanoparticle films. Thin Solid Films. doi:10.1016/j.tsf.2009.09.006.

    Google Scholar 

  • Radcliff, J. (2006). Future directions for water recycling in Australia. Desalination, 187, 77–87.

    Article  CAS  Google Scholar 

  • Raileanu, M., Crisan, M., Dragaon, N., Crisan, D., Galtayries, A., Braileanu, A., et al. (2009). Sol–gel doped TiO2 nanomaterials: A comparative study. Journal of Sol-Gel Science and Technology, 51, 315–329.

    Article  CAS  Google Scholar 

  • Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., & Zou, Z. (2007). Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental, 69, 138–114.

    Article  CAS  Google Scholar 

  • Rengaraj, S., & Li, X. Z. (2006). Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous suspension. Journal of Molecular Catalysis A: Chemical, 243, 60–67.

    Article  CAS  Google Scholar 

  • Rincon, A.-G., & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2. Applied Catalysis B: Environment, 51, 283–302.

    Article  CAS  Google Scholar 

  • Sahoo, C., Gupta, A. K., & Pal, A. (2005). Photocatalytic degradation of Methyl Red dye in aqueous solution under UV irradiation using Ag+ doped TiO2. Desalination, 181, 91–100.

    Article  CAS  Google Scholar 

  • Saien, J., & Khezrianjoo, S. (2008). Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: optimization, kinetics and toxicity studies. Journal of Hazardous Materials, 157, 269–276.

    Article  CAS  Google Scholar 

  • Saquib, M., & Muneer, M. (2002). Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source. Dyes and Pigments, 53, 237–249.

    Article  CAS  Google Scholar 

  • Saquib, M., & Muneer, M. (2003). Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative, Acid Orange 8, in aqueous suspensions. Desalination, 155, 255–263.

    Article  CAS  Google Scholar 

  • Saquib, M., Tariq, M. A., Faisal, M., & Muneer, M. (2008a). Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination, 219, 301–311.

    Article  CAS  Google Scholar 

  • Saquib, M., Tariq, M. A., Haque, M. M., & Muneer, M. (2008b). Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. Journal of Environmental Management, 88, 300–306.

    Article  CAS  Google Scholar 

  • Selvam, K., Muruganandham, M., Muthuvel, I., & Swaminathan, M. (2007). The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-flurophenol. Chemical Engineering Journal, 128, 51–57.

    Article  CAS  Google Scholar 

  • Shakthivel, S., Janczarek, M., & Kisch, H. (2004). Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. The Journal of Physical Chemistry B, 108(50), 19384–19387.

    Article  CAS  Google Scholar 

  • Sheng, Y., Xu, Y., Jiang, D., Liang, L., Wu, D., & Sun Y. (2008). Hydrothermal preparation of visible-light-driven N-Br-Codoped TiO2 photocatalysts. International Journal of Photoenergy, Article ID 563949

  • Shifu, C., & Gengyu, C. (2005). Photocatalytic degradation of pesticides using floating photocatalyst TiO2.SiO2 beads by sunlight. Solar Energy, 79, 1–9.

    Article  CAS  Google Scholar 

  • Shifu, C., & Yunzhang, L. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67, 1010–1017.

    Article  CAS  Google Scholar 

  • Shohrabi, M. R., Davallo, M., & Miri, M. (2009). Influence of operating parameters on eliminating Azo dyes from wastewater by advanced oxidation technology. International Journal of ChemTech Research, 1(3), 446–451.

    Google Scholar 

  • Silva, A. M. T., Silva, C. G., Dražic, G., & Faria, J. L. (2009). Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today, 144, 13–18.

    Article  CAS  Google Scholar 

  • Silveyra, R., Torre Sáenz, L. D., Flores, W. A., Martinez, V. C., & Elguézabal, A. A. (2005). Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation. Catalysis Today, 107–108, 602–605.

    Article  CAS  Google Scholar 

  • Sobana, N., & Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology, 56, 101–107.

    Article  CAS  Google Scholar 

  • Sonawane, R. S., & Dongare, M. K. (2006). Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. Journal of Molecular catalysis A: Chemical, 243, 68–79.

    Article  CAS  Google Scholar 

  • Song, X.-M., Wu, J.-M., & Yan, M. (2009). Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. Thin Solid Films, 517, 4341–4347.

    Article  CAS  Google Scholar 

  • Soutsas, K., Karayannis, V., Poulios, I., Riga, A., Ntampegliotis, K., & Spiliotis, X. (2009). Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. doi:10.1016/j.desal.2009.09.054

  • Su, Y., Deng, L., Zhang, N., Wang, X., & Zhu, X. (2008). Photocatalytic degradation of C.I. Acid Blue 80 in aqueous suspensions of titanium dioxide under sunlight. Reaction Kinetics and Catalysis Letters. doi:10.1007/s11144- 009-0059-4.

    Google Scholar 

  • Subramanian, M., Vijayalakshmi, S., Venkataraj, S., & Jayavel, R. (2008). Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process. Thin Solid Films, 516, 3776–3782.

    Article  CAS  Google Scholar 

  • Sun, L., & Bolton, J. R. (1996). Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. Journal of Physical Chemistry, 100, 4127–4134.

    Article  CAS  Google Scholar 

  • Talebian, N., & Nilforoushan, M. R. (2009). Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of Methylene Blue. Thin Solid Films, 2009, doi.10.1016/j.tsf.2009.07.135

  • Tariq, M. A., Faisal, M., & Muneer, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and Bismarck brown in aqueous suspension. Journal of Hazardous Materials, B127, 172–179.

    Google Scholar 

  • Tariq, M. A., Faisal, M., Saquib, M., & Muneer, M. (2008). Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor. Dyes and Pigments, 76, 358–365.

    Article  CAS  Google Scholar 

  • Terzian, R., & Serpone, N. (1991). Heterogeneous photocatalysed oxidation of creosote components; mineralization of xylenols by illuminated TiO2 in oxygenated aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 89, 163–175.

    Article  Google Scholar 

  • Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., & Zhang, J. (2009). Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chemical Engineering Journal, 151, 220–227.

    Article  CAS  Google Scholar 

  • Tsai, W.-T., Lee, M.-K., Su, T.-Y., & Chang, Y.-M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. Journal of Hazardous Materials, 168, 269–275.

    Article  CAS  Google Scholar 

  • Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminant mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178–192.

    Article  CAS  Google Scholar 

  • Venkatachalam, N., Palanichamy, M., & Murugesan, V. (2007a). Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis A: Chemical, 273, 177–185.

    Article  CAS  Google Scholar 

  • Venkatachalm, N., Palanichamy, M., Arabindo, B., & Murugesan, V. (2007b). Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. Journal of Molecular Catalysis A: Chemical, 266, 158–165.

    Article  CAS  Google Scholar 

  • Vijayabalan, A., Selvam, K., Velmurugan, R., & Swaminathan, M. (2009). Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4. Journal of Hazardous Materials, 172, 914–921.

    Article  CAS  Google Scholar 

  • Wang, H., Niu, J., Long, X., & He, Y. (2008). Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrasonics Sonochemistry, 15, 386–392.

    Article  CAS  Google Scholar 

  • Wawrzyniak, B., Morawski, A. W., & Tryba, B. (2006). Preparation of TiO2-nitrogen-doped photocatalyst active under visible light. International Journal of Photoenergy, Article ID 68248, Pages 1–8 doi:10.1155/IJP/2006/68248

  • Wen, C., Zhu, Y.-J., Kanbara, T., Zhu, H.-Z., & Xiao, C.-F. (2009). Effects of I and F codoped TiO2 on the photocatalytic degradation of Methylene Blue. Desalination, 249, 621–625.

    Article  CAS  Google Scholar 

  • Wenhua, L., Hang, L., Suwan, C., Jianqing, Z., & Chanan, C. (2000). Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. Journal of Photochemistry and Photobiology A: Chemistry, 131, 125–132.

    Article  CAS  Google Scholar 

  • Wong, M.-S., Hsu, S.-W., Koteswara, K., & Praveen Kumar, C. (2008). Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films. Journal of Molecular Catalysis A: Chemical, 279, 20–26.

    Article  CAS  Google Scholar 

  • Wu, C.-H., & Yu, C.-H. (2009). Effects of TiO2 dosage, pH and temperature on decolorisation of C.I. Reactive Red 2 in a UV/US/TiO2 system. Journal of Hazardous Materials, 169, 1179–1183.

    Article  CAS  Google Scholar 

  • Wu, C.-H., Kuo, C.-Y., & Chang, C.-L. (2008). Decolourization of C.I Reactive Red 2 by catalytic ozonation processes. Journal of Hazardous Materials, 153, 152–1058.

    Article  CAS  Google Scholar 

  • Xiao, Q., & Ouyang, L. (2009). Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcinations temperature. Chemical Engineering Journal, 148, 248–253.

    Article  CAS  Google Scholar 

  • Xie, Y., & Zhao, X. (2008). The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F–N-codoped and S–N-codoped titania. Journal of Molecular Catalysis A: Chemical, 285, 142–149.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, X.-J., Chen, J.-T., & Wang, L.-Y. (2004). Effect of doping mode on the photocatalytic activities of Mo/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 163, 517–522.

    Article  CAS  Google Scholar 

  • Yi, Z., Ke-long, H., Zhi-ping, Z., & Chang-bin, X. (2007). Eu2+/Gd3+-codoped nanocrystalline titania catalyst and its photocatalytic activity under natural light. Transaction of Nonferrous Metals Society of China, 17, 1112–1116.

    Article  Google Scholar 

  • Yuan, Z., Jia, J.-H., & Zhang, L.-D. (2002). Influence of co-doping of Zn(II) and Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics, 73, 323–326.

    Article  CAS  Google Scholar 

  • Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. (2004). Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Applied Catalysis A: General, 260, 215–222.

    Article  CAS  Google Scholar 

  • Zhang, H., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). Fabrication of photocatalytic membrane and evaluation of its efficiency in removal of organic pollutants from water. Separation and Purification Technology, 50, 147–155.

    Article  CAS  Google Scholar 

  • Zheng, W., Bingru, Z., & Fengting, L. I. (2007). A simple and cheap method for preparation of coupled ZrO2/ZnO with high photocatalytic activities. Front. Environ. Sci. Eng. China, 1(4), 454–458. doi:10.1007/s11783-007-0072-7.

    Article  Google Scholar 

  • Zhou, Y., Lu, S. X., & Xu, W. G. (2009). Photocatalytuc activity of Nd-doped ZnO for the degradation of C.I. Reactive Blue 4 in aqueous suspension. Environmental progress and Sustainable Energy 2892), doi:10.1002/ep

  • Zhu, J., Zheng, W., He, B., Zhang, J., & Anpo, M. (2004). Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical, 216, 35–43.

    CAS  Google Scholar 

  • Zhu, X., Yuan, C., Bao, Y., Yang, J., & Wu, Y. (2005). Photocatalytic degradation of pesticide pyridaben on TiO2 particles. Journal of Molecular Catalysis: Chemical, 229, 95–105.

    Article  CAS  Google Scholar 

  • Zou, L., & Zhu, B. (2008). The synergistic effect of ozonation and photocatalysis on color removal from reused water. Journal of Photochemistry and Photobiology A: Chemistry, 196, 24–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported under an Australian Research Council (ARC) linkage grant in collaboration with CM Concrete Private limited and Department of Public Works, QLD Government. The authors gratefully acknowledge the financial support of ARC project. One author is also grateful for the financial support of the Queensland Government through the Smart State fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., Rasul, M.G., Martens, W.N. et al. Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water Air Soil Pollut 215, 3–29 (2011). https://doi.org/10.1007/s11270-010-0456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0456-3

Keywords

Navigation