Skip to main content

Advertisement

Log in

Exploring Ground Vegetation Change for Different Deposition Scenarios and Methods for Estimating Critical Loads for Biodiversity Using the ForSAFE-VEG Model in Switzerland and Sweden

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The ForSAFE-VEG model was used to investigate the impacts of climate change and air pollution scenarios on soil chemistry and ground vegetations composition. In particular, the model involves a ground vegetation model incorporating plant changes to ambient site conditions in terms of climate and chemistry, but the model also incorporate competition between the different plant groups. The model was validated against observed values and reproduced observations of tree growth, soil chemistry, and ground vegetation compositions to satisfaction. The results show that the ground vegetation reacts strongly to changes in air pollution, in particular nitrogen as well as to climate change with major shifts in plant composition. A procedure for estimating critical loads for nitrogen, using ground vegetation biodiversity as criterion, was tested and the method seems operable. It suggests that if we want to protect the present biodiversity of the ground vegetation, this will face significant difficulties because of permanent climate change that induced changes in the ecosystem. We conclude that the reference state for ground vegetation biodiversity is rather to be sought for in the future, hopefully using models, than in the past or present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems—Hypotheses revisited. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Achermann, B.,& Bobbink, R. (eds.) 2003 Empirical critical loads for nitrogen. Proceedings of an Expert Workshop, 11–13 November 2002, Berne. Environmental Documentation No. 164. Swiss Agency for the Environment, Forests and Landscape, Berne.

  • Aherne, J., Sverdrup, H., Farrell, E., & Cummins, T. (1998). Application of the SAFE model to a Norway spruce stand at Ballyhooly, Ireland. Forest Ecology and Management, 101, 331–338.

    Article  Google Scholar 

  • Akselsson, C., Sverdrup, H., & Holmqvist, J. (2005). Estimating weathering rates of Swedish forest soils in different scales, using the PROFILE model and affiliated databases. Journal of Sustainable Forestry, 21, 119–131.

    Article  Google Scholar 

  • Alados-Arboledas, L., Olmo, F. J., Alados, I., & Perez, M. (2000). Parametric models to estimate photosynthetically active radiation in Spain. Agr For Meteor, 101, 187–201.

    Article  Google Scholar 

  • Alveteg, M., Sverdrup, H., & Warfvinge, P. (1996). Regional assessment of dynamic aspects of soil acidification in southern Sweden. Water, Air, and Soil Pollution, 85, 2509–2514.

    Article  Google Scholar 

  • Alveteg, M., Kurz, D., & Sverdrup, H. (1998). Integrated assessment of soil chemical status. 1: Integration of existing models and derivation of a regional database for Switzerland. Water, Air, and Soil Pollution, 105, 1–9.

    Article  CAS  Google Scholar 

  • Ballesta, R., Cabrero, B., Jiminez, R., & Sverdrup, H. (1995). Nivles de alteracion y cargas criticas de suelos sobre diferente materiales originaros de la comunidad de Madrid. Rev Boletin Geologico y Minero, 165, 13–22.

    Google Scholar 

  • Barkman, A & Sverdrup, H., (1996). Critical loads of Acidity and Nutrient Imbalance for Forest Ecosystems in Skåne. Reports in Ecology and Environmental Engineering, Chemical Engineering (1:1–67). Lund University, Sweden

  • Barkman, A., Warfvinge, P., & Sverdrup, H. (1995). Regionalization of critical loads under uncertainty. Water, Air, and Soil Pollution, 85, 2515–2520.

    Article  CAS  Google Scholar 

  • Barkman, A., Schlyter, P., Lejonklev, M., Alveteg, M., Warfvinge, P., Sverdrup, H., et al. (1999). Uncertainties in high resolution critical load assessment for forest soils—Possibilities and constraints of combining distributed soil modelling and GIS. Environmental and Geographical Modeling, 3, 125–143.

    Google Scholar 

  • Belyazid, S., Sigurdson, B., Haraldsson, H., Sverdrup, H. (2005). Adapting the ForSAFE model to simulate changes in the ground vegetation after afforestation in Iceland: A feasibility study. In: E. Oddsdottir and G. Halldorsson: Effects of afforestation on ecosystems, landscape and Rural development. Proceedings from a conference held at Reykholt, Iceland, June 20–23, 2005. Andre Nordiske Publikasjoner, Chapter 2:78–84 Nordic Council of Ministers, Copenhagen.

  • Belyazid, S., Westling, O., & Sverdrup, H. (2006). Modelling changes in soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596–609.

    Article  CAS  Google Scholar 

  • Belyazid, S., Bailey, S., Sverdrup, H., (2010). Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: Simulations with the dynamic model ForSAFE. In G. Hanrahan, Modelling of pollutants in complex environmental systems (2, 357–377). ILM Publications: Chicago.

  • Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecological Applications, 16, 1183–1193.

    Article  Google Scholar 

  • Braun, S., Rihm, B., Schindler, C., & Flückiger, W. (1999). Growth of mature beech in relation to ozone and nitrogen deposition: an epidemiological approach. Water, Air, and Soil Pollution, 116, 357–364.

    Article  CAS  Google Scholar 

  • BUWAL (1995). Vom Menschen verursachte Luftschadstoff-Emissionen in der Schweiz von 1900 bis 2010. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Schriftenreihe Umwelt Nr. 256, Luft, Bern.

  • Chapra, S. C. (1980). Application of the phosphorus loading concept to the Great Lakes. In Phosphorus Management Strategies for Lakes. (Eds.) R.C. Loehr, C.S. Martin, W. Rast. Ann Arbor Science Publishers Inc., Ann Arbor, MI.

  • de Vries, W. Kros, H., Reinds, G. J., Wamelink, W., van Dobben, H., Bobbink, R., Smart, S., Evans, C., Schlutow, A., Kraft, P., Belyazid, S., Sverdrup, H., van Hinsberg, A., Posch, M., Hettelingh J-P. (2006). Developments in deriving critical limits and modeling critical loads of nitrogen for terrestrial ecosystems in Europe. Alterra, CCE Report critical N limits and loads CCE. 174 ISSN 1566-7197 ©2006 Alterra Box 47, 6700 AA Wageningen; The Netherlands Phone; e-mail: info.alterra@wur.nl.

  • de Vries, W., Wamelink, W., van Dobben, H., Kros, H., Reinds, G. J., Mol-Dijkstra, J., et al. (2010). Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition. Ecological Applications, 20, 60–79.

    Article  Google Scholar 

  • Efthymiadis, D., Jones, P. D., Briffa, K. R., Auer, I., Böhm, R., Schöner, W., et al. (2006). Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. Journal of Geophysical Research, 110, D01105.

    Article  Google Scholar 

  • Ellenberg, H. (1992). Zeigerwerte von Pflanzen in mitteleuropa. Scripta Geobotanica 18.

  • Falkengren-Grerup, U. (1992). Mark och floraförändringar i sydsvensk ädellövskog. Naturvårdsverket Rapport 4061.

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. Bioscience, 53, 404–420.

    Article  Google Scholar 

  • Flückiger, W., & Braun, S. (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69–76.

    Article  Google Scholar 

  • Grennfelt, P., Moldan, F., Alveteg, M., Warfvinge, P., & Sverdrup, H. (2001). Critical loads—Is there a need for a new concept. Water, Air, & Soil Pollution: Focus, 1, 21–27.

    Article  CAS  Google Scholar 

  • Hansson, J. (1995). Experimenting with modeling of biodiversity as a function of soil acidity and nitrogen. Reports in Ecology and Environmental Engineering 3:1995. Chemical Engineering, Lund University, Lund, Sweden

  • Holmqvist, J., Thelin, G., Rosengren, U., Sternquist, I., Wallman, P., Sverdrup, H. (2002). Assesment of sustainalbility in the Asa Forest Park. In: Developing principles for sustainable forestry. Results from a research program in southern Sweden. H. Sverdrup and I. Stjernquist (Eds) Managing Forest Ecosystems 5:381–426. Kluwer Academic Publishers: Amsterdam.

  • http://www.metoffice.gov.uk/research/hadleycentre/models/modeldata.html.

  • IPCC 2001: Third Assessment Report, Climate Change 2001. Intergovernmental Panel on Climate Change (IPCC). http://www.ipcc.ch/ipccreports/assessments-reports.htm.

  • IPCC 2007: Fourth Assessment Report, Climate Change 2007 Intergovernmental Panel on Climate Change (IPCC). http://www.ipcc.ch/ipccreports/assessments-reports.htm.

  • Jönsson, C., Warfvinge, P., & Sverdrup, H. (1995). Application of the SAFE model to the Solling spruce site. Ecological Modeling, 83, 85–96.

    Article  Google Scholar 

  • Körner, C. (1999). Alpine plant life, functional ecology of high mountain ecosystems. Berlin: Springer.

    Google Scholar 

  • Kurz, D., Alveteg, M., & Sverdrup, H. (1998). Integrated assessment of soil chemical status. 2: Application of a regionalized model to 622 forested sites in Switzerland. Water, Air, and Soil Pollution, 105, 12–20.

    Article  Google Scholar 

  • Lambers, H., Stuart Chapin, E., Pons, T. (1998). Plant physiological ecology. Springer Verlag Berlin.

  • Landolt E (1977) Oekologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Stiftung Rübel, in Zürich 64, 1–208. Bern, Huber.

  • Latour, J. B., Reiling, R., & Slooff, W. (1994). Ecological limit values for eutrophication and desiccation: perspectives for a risk assessment. Water, Air, and Soil Pollution, 78, 265–277.

    Article  CAS  Google Scholar 

  • Lövblad, G., Grennfelt, P., Westling, O., Sverdrup, H., & Warfvinge, P. (1996). The use of critical load exceedances in abatement strategy planning. Water, Air, and Soil Pollution, 85, 2425–2430.

    Google Scholar 

  • Luterbacher J. (2007) Manual to the gridded monthly instrumental and reconstructed surface air temperature and precipitation reconstructions for the Greater Alpine Region (GAR) back to AD 1659. Institute of Geography (Climatology and Meteorology group), University of Bern.

  • Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., & Wanner, H. (2004). European seasonal and annual temperature variability, trends and extremes since 1500. Science, 303, 1499–1503.

    Article  CAS  Google Scholar 

  • Luterbacher, J., Küttel, M., Neukom, R. (2007). Monthly gridded precipitation reconstructions for the Greater Alpine Region (GAR) 1659–1800 using Efthymiadis et al. 2006 as fitting data. Data supplied in August 2007. Institute of Geography, Climatology and Meteorology group, University of Bern.

  • Malek, S., Martinsson, L., & Sverdrup, H. (2005). Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland, using the SAFE model. Environmental Pollution, 137, 568–573.

    Article  CAS  Google Scholar 

  • Martinson, L., Alveteg, M., Kronnäs, V., Sverdrup, H., Westling, O., & Warfvinge, P. (2004). A regional perspective on present and future soil chemistry at 16 Swedish forest sites. Water, Air, and Soil Pollution, 162, 89–105.

    Article  Google Scholar 

  • Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712.

    Article  Google Scholar 

  • Nihlgård, B. (1972). Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest ecosystem in South Sweden. Oikos, 23, 69–81.

    Article  Google Scholar 

  • Nihlgård, B., & Lindgren, L. (1977). Plant biomass, primary production and bioelements of three different beech forests in South Sweden. Oikos, 28, 95–104.

    Article  Google Scholar 

  • Nilsson, J., & Grennfelt, P. (Eds.). (1988). Critical loads for sulphur and nitrogen. Report 1988:15. Copenhagen, Denmark: Nordic Council of Ministers.

    Google Scholar 

  • Posch, M., & Kurz, D. (2007). A2M—a program to compute all possible mineral modes from geochemical analyses. Computers and Geosciences, 33, 563–572.

    Article  CAS  Google Scholar 

  • Posch, M., de Smet, P. A. M., Hettelingh, J-P. & Downing, R. (1995). Calculation and mapping of critical thresholds in Europe: Status Report 1995. Coordination Centre for Effects, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands. Available online at: http://www.mnp.nl/cce/.

  • Remund J., Kunz S., Schilter C. (2007) METEONORM 6.0 Handbook Part I (Software) and Part II (Theory). Copyright METEOTEST, Berne, and Swiss Federal Office of Energy, Berne, Switzerland, May 2007. http://www.meteonorm.ch.

  • Rowe, E. C., Moldan, F., Emmett, B., Evans C. D., Hellsten, S. (2005) Model chains for assessing impacts of nitrogen on soils, waters and biodiversity: a review Workshop on Nitrogen Processes and Dynamic Modelling 26–28 October 2005, Brighton, United Kingdom 6th meeting of the Joint Expert Group on Dynamic Modelling Working Group on Effects Convention on Transboundary Air Pollution. Centre for Ecology and Hydrology (NERC), DEFRA (UK) Project No. CPEA 19

  • Rubio, M. A., López, G., Tovar, J., Pozo, D., Batlles, F. J. (2005) The use of satellite measurements to estimate photosynthetically active radiation SAEFEL Report.

  • SAEFL (1998) Acidification of Swiss forest soils—Development of a regional dynamic assessment. Environmental Documentation Air/Forest No. 89. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne, p 115.

  • SAEFL (2001) Acidifying deposition—Southern Switzerland. Environmental Documentation No. 134. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne.

  • SAEFL (2003) Modelling of PM10 and PM2.5 ambient concentrations in Switzerland 2000 and 2010. INFRAS/METEOTEST. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Environmental Documentation No. 169, Berne.

  • SAEFL (2004) Modelling of NO2 and benzene ambient concentrations in Switzerland 2000 to 2020. Swiss Agency for the Environment, Forests and Landscape, Environmental Documentation No. 188, Berne.

  • Schlutow A, & Huebener P. (2004) The BERN Model: Bioindication for Ecosystem Regeneration towards Natural conditions. Environmental research of the federal ministry of the environment, nature conservation and nuclear safety. Research Report 200, 85 221

  • Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.

    Article  Google Scholar 

  • Schulze, E.-D., & Mooney, H. A. (Eds.). (1993). Biodiversity and ecosystem function. Ecological Studies 99. New York: Springer-Verlag.

    Google Scholar 

  • Stevens, C. J., Dice, N. B., Mountford, J. O., & Cowling, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

    Article  CAS  Google Scholar 

  • Sverdrup (1990). Kinetics of base cation release from chemical weathering of silicate minerals. Lund University Press - Chartwell-Bratt Ltd, London, ISBN 0-86238-247-5, p 245

  • Sverdrup, H., & Warfvinge, P. (1988a). Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water, Air and Soil, 38, 387–408.

    CAS  Google Scholar 

  • Sverdrup, H. and Warfvinge, P., (1988b) Assesment of critical loads of acid deposition on forest soils, In Critical loads for sulphur and nitrogen, Proceedings from the Skokloster Workshop, Nilsson, J., (Ed) Nordic Council of Ministers and The United Nations Economic Commission for Europe (ECE), Stockholm, Nordic Council of Ministers Miljörapport 15, 81–130.

  • Sverdrup, H., & Warfvinge, P. (1993a). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio, Reports in Ecology and Environmental Engineering 2:1993. Chemical Engineering: Lund University, Lund, Sweden.

    Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1993b). Calculating field weathering rates using a mechanistic geochemical model—PROFILE. Journal of Applied Geochemistry, 8, 273–283.

    Article  CAS  Google Scholar 

  • Sverdrup, H., & de Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air, and Soil Pollution, 72, 143–162.

    Article  CAS  Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1995). Estimating field weathering rates using laboratory kinetics. In: A. F. White and S. L. Brantley, (Eds), Chemical weathering rates of silicate minerals. Mineralogical Society of America, Washington D. C. Reviews in Mineralogy, 31, 485–541.

    CAS  Google Scholar 

  • Sverdrup, H., & Rosen, K. (1998). Long-term base cation mass balances for Swedish forests and the concept of sustainability. Forest Ecology and Management, 110, 221–236.

    Article  Google Scholar 

  • Sverdrup, H., de Vries, W. & Henriksen, A. (1990). Mapping critical loads. Nordic Council of Ministers, Geneve. Miljörapport 1990:15, Nord 1990:98.

  • Sverdrup, H., Warfvinge, P., Janicki, A., Morgan, R., Rabenhorst, M., & Bowman, M. (1992). Mapping critical loads and steady state stream chemistry in the state of Maryland. Environmental Pollution, 77, 195–203.

    Article  CAS  Google Scholar 

  • Sverdrup, H., Warfvinge, P., Blake, L., & Goulding, K. (1995). Modeling recent and historic soil data from the Rothamsted Experimental Station, UK, using SAFE. Agriculture, Ecosystems and Environment, 53, 161–177.

    Article  Google Scholar 

  • Sverdrup, H., Warfvinge, P., & Rosen, K. (1996a). Critical loads of acidity and nitrogen, based on multiple criteria for different Swedish ecosystems. Water, Air, and Soil Pollution, 85, 2375–2380.

    Google Scholar 

  • Sverdrup, H., Warfvinge, P., & Britt, D. (1996b). Assessing the potential for forest effects due to soil acidification in Maryland. Water, Air and Soil Pollution, 87, 245–265.

    Article  CAS  Google Scholar 

  • Sverdrup, H., Warfvinge, P., Moldan, F., & Hultberg, H. (1996c). Modelling acidification and recovery in the roofed catchment at lake Gårdsjön, using the SAFE model. Water, Air, and Soil Pollution, 85, 1753–1758.

    Article  Google Scholar 

  • Sverdrup, H., Nihlgård, B., Svensson, M., Thelin G. (2002). Principles of sustainable forest management. In: Developing principles for sustainable forestry. Results from a research program in southern Sweden. H. Sverdrup and I. Stjernquist (Eds) Managing Forest Ecosystems 5:33–56, Kluwer Academic Publishers, Amsterdam.

  • Sverdrup, H., Stjernquist, I., Thelin, G., Holmqvist, J., Wallman, P., & Svensson, M. (2005a). Application of natural, social, and economical sustainability limitations to forest management, based on Swedish experiences. Journal of Sustainable Forestry, 21, 147–176.

    Article  Google Scholar 

  • Sverdrup, H., Martinsson, L., Alveteg, M., Moldan, F., Kronnäs, V., & Munthe, J. (2005b). Modeling recovery of Swedish ecosystems from acidification. Ambio, 34, 25–31.

    Google Scholar 

  • Sverdrup, H., Belyazid, S., Haraldsson, H., Nihlgård, B. (2005c). Modelling change in ground vegetation from effects of nutrients, pollution, climate, grazing and land use. In Edda Oddsdottir and Gudmundur Halldorsson (Eds.), Effects of afforestation on ecosystems, landscape and Rural development. Proceedings from a conference held at Reykholt, Iceland, June 20–23, 2005. Andre nordiske publikasjoner, Chapter 1:33–43. Nordic Council of Ministers, Copenhagen.

  • Sverdrup, H., Thelin, G., Robles, M., Stjernquist, I., & Sörensen, J. (2006). Assessing sustainability of different tree species considering Ca, Mg, K, N and P at Björnstorp Estate. Biogeochemistry, 81, 219–238.

    Article  CAS  Google Scholar 

  • Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management at in Sweden 1500–2100 A.D. Water, Air, and Soil Pollution: Focus, 7, 163–179.

    Article  CAS  Google Scholar 

  • Thelin, G., Sverdrup, H., Holmqvist, J., Rosengren, U., Linden, M. (2002). Sustainability in spruce and mixed-species stands. In: Developing principles for sustainable forestry. Results from a research program in southern Sweden. H. Sverdrup and I. Stjernquist (Eds) Managing Forest Ecosystems 5:337–354. Kluwer Academic Publishers, Amsterdam.

  • Theodose, T. A., & Bowman, W. D. (1997). Nutrient avialability, plant abundance, and species diversity in two alpine tundra communities. Ecology, 78, 1861–1872.

    Article  Google Scholar 

  • Thöni, L., Brang, P., Braun, S., Seitler, E., & Rihm, B. (2004). Ammonia monitoring in Switzerland with passive samplers: Patterns, determinants and comparison with modelled concentrations. Environmental Monitoring and Assessment, 98, 95–107.

    Article  Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 72, 2–16.

    Article  Google Scholar 

  • UBA (2004). Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Umweltbundesamt Texte 52/04, Berlin www.icpmapping.org.

  • UN/ECE (1992). Critical Loads for Nitrogen. UN-ECE-Workshop report Lökeberg, Sweden, 6–10. April 1992. In: Grennfelt P, Thörnelöf E (eds) 1992:41: Nord.

  • Vollenweider, R. A. (1966). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem 1st Ital Idrobiol, 33, 53–83.

    Google Scholar 

  • Vollenweider, R. A., Rast, W., Kerekes, J. (1980) The phosphorus loading concept and Great Lakes eutrophication. In: Phosphorus Management Strategies for Lakes. Ed. R.C. Loehr, C.S. Martin, W. Rast. Ann Arbor Science Publishers Inc., Ann Arbor, MI.

  • Wallman, P., Svensson, M., Sverdrup, H., & Belyazid, S. (2005). ForSAFE—An integrated process-oriented forest model for long-term sustainability assessments. Forest Ecology and Management, 207, 19–36.

    Article  Google Scholar 

  • Walse, C., Berg, B., Sverdrup, H. (1998). Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture and acidity. Environmental Review, 6, 25–40.

    Google Scholar 

  • Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE—A steady-state soil chemistry model. Water, Air, and Soil Pollution, 63, 119–143.

    Article  CAS  Google Scholar 

  • Warfvinge P. Sverdrup, H. (1995) Critical loads of acidity to Swedish forest soil, methods, data and results. Reports in Environmental Engineering and Ecology 5:1–127. Chemical Engineering, Lund University. 221 00 Lund, Sweden.

  • Warfvinge, P., Sverdrup, H., Ågren, H., Rosen K. (1992a). Effekter av luftföroreningar på framtides skogstillväxt. In: Skogspolitikken inför 2000-talet—1990 års skospolitiska kommite, Statens offentliga utredningar. SOU 76, 377-412.

  • Warfvinge, P., Sverdrup, H., Rosen K. (1992b). Calculating critical loads for N to forest soils. Nord 1992:41:403-417. Nordic Council of Ministers.

    Google Scholar 

  • Warfvinge, P., Falkengren-Grerup, U., Sverdrup, H., & Andersen, B. (1993). Modeling long-term cation supply in acidified forest stands. Environmental Pollution, 80, 209–221.

    Article  CAS  Google Scholar 

  • Warfvinge, P., Sverdrup, H., Alveteg, M., & Rietz, F. (1996). Modelling geochemistry and lake pH since glaciation at lake Gårdsjön. Water, Air, and Soil Pollution, 85, 713–718.

    Article  Google Scholar 

  • Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., et al. (2005). European spring and autumn temperature variability and change of extremes over the last half millennium. Geophysical Research Letters, 32, L15713.

    Article  Google Scholar 

Download references

Acknowledgments

This study would not have been possible without the generous support of the Swiss Federal Office for the Environment (FOEN) and the Swiss National Focal Centre for modeling and mapping activities under the UN-ECE Convention on Long-Range Transboundary Air Pollution. The Swedish critical loads effort has profited significantly from the Swiss cooperation and support. The study used models and datasets developed within the Swedish long-term research programs ASTA 1997–2006 and SUFOR 1996–2005, supported by the MISTRA research foundation in Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Sverdrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyazid, S., Sverdrup, H., Kurz, D. et al. Exploring Ground Vegetation Change for Different Deposition Scenarios and Methods for Estimating Critical Loads for Biodiversity Using the ForSAFE-VEG Model in Switzerland and Sweden. Water Air Soil Pollut 216, 289–317 (2011). https://doi.org/10.1007/s11270-010-0534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0534-6

Keywords

Navigation