Skip to main content
Log in

Assessment of the Potential Cyto–Genotoxicity of the Nonsteroidal Anti-Inflammatory Drug (NSAID) Diclofenac on the Zebra Mussel (Dreissena polymorpha)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A battery of eight biomarkers was used on the freshwater bivalve Dreissena polymorpha in order to evaluate potential sub-lethal effects of the nonsteroidal anti-inflammatory drug diclofenac (DCF; 2-[(2,6-dichlorophenyl)amino]phenylacetic acid). By an in vivo approach, mussels were exposed for 96 h to increasing concentrations (0.3, 1, and 2 nM) of DCF perfectly comparable with current surface water levels. We determined the single cell gel electrophoresis assay, the apoptotic frequency (DNA Diffusion assay), the micronucleus test (MN test), and the lysosomal membrane stability (Neutral Red Retention Assay) in mussel hemocytes. Moreover, the activity of catalase, superoxide dismutase, glutathione peroxidase, and the phase II detoxifying enzyme glutathione S-transferase was measured in the cytosolic fraction extracted from a pool of entire bivalves to reveal possible alterations of the oxidative status of exposed specimens. The biomarker battery pointed out a negligible cyto- and genotoxicity on zebra mussel hemocytes since only a slight decrease of lysosomal membrane stability from baseline levels was measured at the end of exposures at the highest concentration (2 nM). In addition, environmental concentrations of DCF seem to have a negligible effect on the activities of antioxidant and detoxifying enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashton, D., Hilton, M., & Thomas, K. V. (2004). Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. The Science of the Total Environment, 333, 167–184.

    Article  CAS  Google Scholar 

  • Binelli, A., & Provini, A. (2003). DDT is still a problem in developed countries: the heavy pollution of Lake Maggiore. Chemosphere, 52, 717–723.

    Article  CAS  Google Scholar 

  • Binelli, A., Ricciardi, F., Riva, C., & Provini, A. (2005). Screening of POP pollution by AChE and EROD activities in Zebra mussels from the Italian great lakes. Chemosphere, 61(8), 1074–1082.

    Article  CAS  Google Scholar 

  • Binelli, A., Cogni, D., Parolini, M., Riva, C., & Provini, A. (2008). In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in Zebra mussel hemocytes. Aquatic Toxicology, 91, 238–244.

    Article  Google Scholar 

  • Binelli, A., Riva, C., Cogni, D., & Provini, A. (2008). Assessment of the genotoxic potential of benzo(α)pyrene and pp’-dichlorodiphenyldichloroethylene in Zebra mussel (Dreissena polymorpha). Mutation Research, 649, 135–145.

    CAS  Google Scholar 

  • Binelli, A., Parolini, M., Cogni, D., Pedriali, A., & Provini, A. (2009). A multi-biomarker assessment of the impact of the antibacterial trimethoprim on the non-target organism Zebra mussel (Dreissena polymorpha). Comparative Biochemistry and Physiology Part C, 150, 329–336.

    CAS  Google Scholar 

  • Boelsterli, U. A. (2003). Diclofenac-inducedliver injury: a paradigm of idiosyncratic drug toxicity. Toxicology and Applied Pharmacology, 192(3), 307–322.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Buschini, A., Carboni, P., Martino, A., Poli, P., & Rossi, C. (2003). Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutation Research, 537, 81–92.

    CAS  Google Scholar 

  • Cantoni, L., Valaperta, R., Ponsoda, X., Castell, J., Barelli, D., Rizzardini, M., et al. (2003). Induction of hepatic heme oxygenase-1 by diclofenac in rodents: role of oxidative stress and cytochrome P-450 activity. Journal of Hepatology, 38, 776–783.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2003). Aquatic ecotoxicity of selected pharmaceuticals including the assessment of combination effects. Toxicology Letters, 142, 185–194.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59, 309–315.

    Article  CAS  Google Scholar 

  • Deng, A., Himmelsbach, M., Zhu, Q.-Z., Sengl, M., Buchberger, W., Niessner, R., et al. (2003). Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC–MS. Environmental Science &Technology, 37, 3422–3429.

    Article  CAS  Google Scholar 

  • Dietrich, D. R., & Prietz, A. (1999). Fish embryotoxicity and teratogenicity of pharmaceuticals, detergents and pesticides regularly detected in sewage treatment plant effluents and surface waters. Toxicologist, 48(1), 151.

    Google Scholar 

  • Evans, D. C., Watt, A. P., Nicoll-Griffith, D. A., & Baillie, T. A. (2004). Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chemical Research in Toxicology, 17(1), 3–16.

    Article  CAS  Google Scholar 

  • Faria, M., Carrasco, L., Diez, S., Riva, M. C., Bayona, J. M., & Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C, 149, 281–288.

    Google Scholar 

  • Ferrari, B., Paxéus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55, 359–370.

    Article  CAS  Google Scholar 

  • Gagné, F., Blaise, C., Fournier, M., & Hansen, P. D. (2006). Effects of selected pharmaceutical products on phagocytic activity in Elliptio complanata mussels. Comparative Biochemistry and Physiology Part C, 143, 179–186.

    Google Scholar 

  • Gierse, J. K., Hauser, S. D., Creely, D. P., Koboldt, C., Rangwala, S. H., Isakson, P. C., et al. (1995). Expression and selective inhibition of the constitutive and inducible forms of human cyclooxygenase. The Biochemical Journal, 305, 479–484.

    CAS  Google Scholar 

  • Gómez, M. J., Martínez Bueno, M. J., Lacorte, S., Fernández-Alba, A. R., & Agüera, A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 66(6), 993–1002.

    Article  Google Scholar 

  • Gros, M., Petrović, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta, 70(4), 678–690.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Nielsen, N., Lansky, P. F., Ingerslev, F., Hansen, L., Lützhøft, H. C., et al. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment — a review. Chemosphere, 36, 357–394.

    Article  Google Scholar 

  • Heberer, T., & Feldmann, D. (2005). Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents-modeling versus measurements. Journal of Hazardou Materials, 122, 211–218.

    Google Scholar 

  • Hong, H., Na Kim, H., Park, H., Lee, S., & Bock Gu, M. (2007). Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR. Chemosphere, 67, 2115–2121.

    Article  CAS  Google Scholar 

  • International Council for the Exploration of the Sea. (2004). Biological Effects of Contaminants: Measurement of Lysosomal Membrane Stability. In M. N. Moore & D. Lowe (Eds.), ICES Techniques in Marine Environmental Sciences (Vol. 36, p. 39). Copenhagen: ICES.

    Google Scholar 

  • Kirchin, M. A., Moore, M. N., Dean, R. T., & Winston, G. W. (1992). The role of oxyradicals in intracellular proteolysis and toxicity in mussels. Marine Environmental Research, 34, 315–320.

    Article  CAS  Google Scholar 

  • Kirkland, D. J., Hayashi, M., Jacobson-Kram, D., Kasper, P., MacGregor, J. T., Müller, L., et al. (2007). Summary of major conclusions from the 4th IWGT, San Francisco, 9–10 September, 2005. Mutation Research, 627, 5–9.

    CAS  Google Scholar 

  • Kirsch-Volders, M., Sofuni, T., Aaderma, M., Albertini, S., Eastmond, D., Fenech, M., et al. (2000). Report from the in vitro micronucleus assay working group. Environmental and Molecular Mutagenesis, 35, 167–172.

    Article  CAS  Google Scholar 

  • Koutsouba, V., Heberer, T., Fuhrman, B., Schmidt-Baumler, K., Tsipi, D., & Hiskia, A. (2003). Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography–mass spectrometry. Chemosphere, 51, 69–75.

    Article  CAS  Google Scholar 

  • Laneuville, O., Breuer, D. K., Dewitt, D. L., Hla, T., Funk, C. D., & Smith, W. L. (1994). Differential inhibition of human prostaglandin endoperoxide Hsynthases-1 and -2 by nonsteroidal anti-inflammatory drugs. The Journal of Pharmacology and Experimental Therapeutics, 271, 927–934.

    CAS  Google Scholar 

  • Langman, M. J. S. (1999). Epidemiology of non-steroidal anti-inflammatory drug damage to stomach and duodenum. Italian Journal of Gastroenterology and Hepatology, 31(S1), 2–5.

    Google Scholar 

  • Lauer, B., Kling, M. O., Tuschl, G., & Mueller, S. (2009). Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes. Chemical–Biological Interactions, 179, 17–24.

    Article  CAS  Google Scholar 

  • Letzel, M., Metzner, G., & Letzel, T. (2009). Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input. Environment International, 35, 363–368.

    Article  CAS  Google Scholar 

  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39, 2228.

    Article  Google Scholar 

  • Lowe, D. M., & Pipe, R. K. (1994). Contaminant induced lysosomal membrane damage in marine mussel digestive cells: an in vitro study. Aquatic Toxicology, 30, 357–365.

    Article  CAS  Google Scholar 

  • Lowe, D. M., Fossato, V. U., & Depledge, M. H. (1995). Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from the Venice Lagoon: an in vitro study. Marine Ecology Progress Series, 129, 189–196.

    Article  Google Scholar 

  • Mamaca, E., Bechmann, R. K., Torgrimsen, S., Aas, E., Bjørnstad, A., Baussant, T., et al. (2005). The neutral red lysosomal retention assay and comet assay on haemolymph cells from mussels (Mytilus edulis) and fish (Symphodus melops) exposed to styrene. Aquatic Toxicology, 75, 191–201.

    Article  CAS  Google Scholar 

  • Metcalfe, B. G., Koening, D. T., Bennie, M., Servos, T. A., Ternes, & Hirsch, R. (2003). Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environmental Toxicology and Chemistry, 22, 2872–2889.

    Article  CAS  Google Scholar 

  • Mitchelmore, C. L., Birmelin, C., Chipman, J. K., & Livingstone, D. R. (1990). Evidence for cytochrome P-450 catalysis and free radical involvement in the production of DNA strand breaks by benzo(a)pyrene and nitroaromatics in mussel (Myitilus edulis L.) digestive gland cells. Aquatic Toxicology, 41, 193–212.

    Article  Google Scholar 

  • Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427, 630–633.

    Article  CAS  Google Scholar 

  • Orbea, A., Ortiz-Zarragoitia, M., Solé, M., Porte, C., & Cajaraville, M. P. (2002). Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquatic Toxicology, 58, 75–98.

    Article  CAS  Google Scholar 

  • Osman, A. M., & van Noort, P. C. M. (2007). Comparison of key enzymes in the zebra mussel, Dreissena polymorpha, the earthworm Allolobophora chlorotica and Chironomus riparius larvae. Ecotoxicology and Environmental Safety, 67, 212–217.

    Article  CAS  Google Scholar 

  • Osman, A. M., Rotteveel, S., den Besten, P. J., & van Noort, P. C. M. (2004). In vivo exposure of Dreissena polymorpha mussels to the quinines menadione and lawsone: menadione is more toxic to mussels than lawsone. Journal of Applied Toxicology, 24, 135–141.

    Article  CAS  Google Scholar 

  • Osman, A. M., van den Heuvel, H., & van Noort, P. C. M. (2007). Differential responses of biomarkers in tissues of a freshwater mussel, Dreissena polymorpha, to the exposure of sediment extracts with different levels of contamination. Journal of Applied Toxicology, 27, 51–59.

    Article  CAS  Google Scholar 

  • Parolini, M., Binelli, A., Cogni, D., & Provini, A. (2010). Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere, 79, 489–498.

    Article  CAS  Google Scholar 

  • Pavlica, M., Klobucar, G. I. V., Vetma, N., Erben, R., & Papeš, D. (2000). Detection of micronuclei in haemocytes of zebra mussel and ramshorn snail exposed to pentachlorophenol. Mutation Research, 465, 145–150.

    CAS  Google Scholar 

  • Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., et al. (2002). Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Marine Environmental Research, 54, 419–423.

    Article  CAS  Google Scholar 

  • Regoli, F., Winston, G. W., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., et al. (2003). Integrating enzymatic responses to organic chemical exposure with total oxyradical absorbing capacity and DNA damage in the European eel Anguilla anguilla. Environmental Toxicology and Chemistry, 22, 2120–2129.

    Article  CAS  Google Scholar 

  • SRC (Syracuse Research Corporation). (2006). Physical Properties Database (PHYSPROP). www.srcinc.com

  • Riva, C., Binelli, A., Cogni, D., & Provini, A. (2007). Evaluation of DNA damages induced by BDE-209 in haemocytes of Dreissena polymorpha using SCGE assay and MN test. Environmental and Molecular Mutagenesis, 48, 735–743.

    Article  CAS  Google Scholar 

  • Roberts, P. H., & Thomas, K. V. (2006). The occurrence of selected pharmaceuticals in wastewater effluents and surface waters of the lower Thyne catchment. The Science of the Total Environment, 356, 143–153.

    Article  CAS  Google Scholar 

  • Singh, N. P. (2000). Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutation Research, 455, 111–127.

    Article  CAS  Google Scholar 

  • Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. (1988). A simple technique for quantification of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.

    Article  CAS  Google Scholar 

  • Taggart, M., Senacha, K., Green, R., Jhala, Y., Raghavan, B., Rahmani, A., et al. (2007). Diclofenac residues in carcasses of domestic ungulates available to vultures in India. Environment International, 33, 759–765.

    Article  CAS  Google Scholar 

  • Tang, W. (2003). The metabolism of diclofenac—enzymology and toxicology perspectives. Current Drug Metabolism, 4(4), 319–329.

    Article  CAS  Google Scholar 

  • Todd, P. A., & Sorkin, E. M. (1988). Diclofenac sodium. A reappraisal of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs, 35, 244–285.

    Article  CAS  Google Scholar 

  • Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Kohler, H.-R., & Schwaiger, J. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 68(2), 151–166.

    Article  CAS  Google Scholar 

  • Tuschl, G., Lauer, B., & Mueller, S. O. (2008). Primary hepatocytes as a model to analyze species-specific toxicity and drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 7, 855–870.

    Article  Google Scholar 

  • Winston, G. W., Moore, M. N., Kirchin, M. A., & Soverchia, C. (1996). Production of reactive oxygen species (ROS) by hemocytes from the marine mussel, Mytilus edulis. Comparative Biochemistry and Physiology Part C, 113, 221–229.

    Article  CAS  Google Scholar 

  • Xiao, Q., Zhang, S., Guo, H., Su, F., & Xu, Y. (2007). Nonylphenol causes decrease in antioxidant enzyme activities, increase in O2 - content, and alterations in ultrastructures of FG cells, a Flounder (Paralichthys olivaceus) gill cell line. Toxicology Mechanisms and Methods, 17, 127–134.

    Article  CAS  Google Scholar 

  • Yan, Z., Li, J., Huebert, N., Caldwell, G. W., Du, Y., & Zhong, H. (2005). Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides. Drug Metabolism and Disposition, 33(6), 706–713.

    Article  CAS  Google Scholar 

  • Zhang, Y., Geißen, S., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73, 1151–1161.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling. Analytica Chimica Acta, 607, 37–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Parolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parolini, M., Binelli, A. & Provini, A. Assessment of the Potential Cyto–Genotoxicity of the Nonsteroidal Anti-Inflammatory Drug (NSAID) Diclofenac on the Zebra Mussel (Dreissena polymorpha). Water Air Soil Pollut 217, 589–601 (2011). https://doi.org/10.1007/s11270-010-0612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0612-9

Keywords

Navigation