Skip to main content
Log in

Removal of Hexavalent Chromium from Water by Polyurethane–Keratin Hybrid Membranes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The feasibility of employing a porous polyurethane–keratin hybrid membrane for the removal of hexavalent chromium was investigated. Keratin was extracted from chicken feathers and incorporated onto a synthetic polyurethane polymer to synthesize a hybrid membrane. Keratin supply active sites to bioadsorb Cr(VI) and polyurethane play an important role as the support to protein. Also, polyurethane–keratin biofiber membranes were synthesized. Biofibers obtained from chicken feathers were modified to activate their surface. The effective pore in membranes is less than 50 nm, which places these materials in the mesopore range. Scanning electron microscopy (SEM) was used to study the morphology of membranes, and mechanical dynamical analysis (DMA) was used to evaluate the viscoelastic properties. NH, C=O, S–S and C–S were determined via Fourier-transform infrared (FTIR) analysis as functional groups of keratin, which participate in the linking sorption of hexavalent chromium. Adsorption of Cr(VI) was carried out in a filtering system at low contact time in continuous flux; the maximum removal reached was 38% at neutral pH of chromium solution. Results indicate that the isoelectric point of keratin is relevant in the adsorption process. pH of keratin solution above the isoelectric point brings about higher adsorption of heavy metals, whereas lower pH causes minor adsorptions, due to the functional groups’ ion charges. Based on the results, keratin extracted from feathers is a natural biosorbent that can be incorporated onto synthetic polymers to develop novel membranes and improve its applications in the heavy metal separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aksu, Z., Gönen, F., & Demarcan, Z. (2002). Biosorption of chromium (VI) ions by Mowital (R) B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochemistry, 38, 175–186.

    Article  CAS  Google Scholar 

  • Bailey, S., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost for heavy metals. Water Research, 33, 2469–2479.

    Article  CAS  Google Scholar 

  • Banat, F. A., & Al-Asheh, S. (2000). Biosorption of phenol by chicken feathers. Environmental Engineering and Policy, 2, 85–90.

    Article  Google Scholar 

  • Brostow, W., Hagg Lobland, H. E., Pal, S., & Singh, R. P. (2009). Polymeric flocculants for wastewater and industrial effluent treatment. Journal of Materials Education, 31, 157–166.

    CAS  Google Scholar 

  • Farkas, E., & Sóvágó, I. (2002). Metal complexes of amino acids and peptides. In: G. C. Barrett and J. S. Davies (Eds.), Amino Acids, Peptides and Proteins, (33, 295–364). Cambridge: Royal Society of Chemistry Publishing.

  • Hu, X., Stanford, J. L., Day, R. J., & Young, R. J. (1992). Synthesis, characterization, and structure of glassy diaceyilene-containing segmented block copolyurethanes. Macromolecules, 25, 672–683.

    Article  CAS  Google Scholar 

  • Kar, P., & Misra, M. (2004). Use of keratin fiber for separation of heavy metals from water. Journal of Chemical Technology and Biotechnology, 79, 1313–1319.

    Article  CAS  Google Scholar 

  • Kruppa, M., Frank, D., Leffler-Schuster, H., & König, B. (2006). Screening of metal complex-amino acid side chain interactions by potentiometric titration. Inorganica Chimica Acta, 359, 1159–1168.

    Article  CAS  Google Scholar 

  • Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207–219.

    Article  CAS  Google Scholar 

  • Li, J. P., Lin, Q., Zhang, X., & Yan, Y. (2009). Kinetic parameters and mechanisms of the batch biosorption of Cr (VI) and Cr (III) onto Leersia hexandra Swartz biomass. Journal of Colloid and Interface Science, 333, 71–77.

    Article  CAS  Google Scholar 

  • Lowell, S., Shields, J. E., Thomas, M. A., Thommes, M. (2006). Characterization of porous solids and powders: Surface area, pore size and density. Netherlands: Springer.

  • Martínez-Hernandez, A. L., Velasco Santos, C., de Icaza, M., & Castaño Meneses, V. M. (2005). Mechanical properties evaluation of new composites with protein biofibers reinforcing poly(methyl methacrylate). Polymer, 46, 8233–8238.

    Article  Google Scholar 

  • Martínez-Hernandez, A. L., Velasco Santos, C., de Icaza, M., & Castaño Meneses, V. M. (2007). Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites: Part B, 38, 405–410.

    Article  Google Scholar 

  • Martínez-Hernández, A. L., Santiago-Valtierra, A. L., & Alvarez-Ponce, M. J. (2008). Chemical modification of keratin biofibers by graft polymerization of methyl methacrylate using redox initiation. Materials Research Innovations, 12, 184–191.

    Article  Google Scholar 

  • Mishra, A. K., Chattopadhyay, D. K., Sreedhar, B., & Raju, K. V. S. N. (2006). Thermal and dynamic mechanical characterization of polyurethane-urea-imide coatings. Journal of Applied Polymer Science, 102, 3158–3167.

    Article  CAS  Google Scholar 

  • Misra, M., Kar, P., & Priyadarshan, G. (2002). Keratin protein nano-fiber for removal of heavy metals and contaminants. Materials Research Society Symposium Proceedings, 702, 35–41.

    CAS  Google Scholar 

  • Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Recent developments on ion-exchanges membranes and electro-membrane processes. Advances in Colloid and Interface Science, 119, 97–130.

    Article  CAS  Google Scholar 

  • Özdemir, G., & Sezgin, Ö. E. (2006). Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface. Colloids and Surfaces, B: Biointerfaces, 52, 1–7.

    Article  Google Scholar 

  • Pugazhenthi, G., & Kumar, A. (2005). Chromium (VI) separation from aqueous solution using anion exchange membrane. AIChE Journal, 51, 2001–2010.

    Article  CAS  Google Scholar 

  • Ritchie, S. M. C., Bachas, L. G., Olin, T., Sikdar, S. K., & Bhattacharyya, D. (1999). Surface modification of silica- and celullose –based microfiltration membranes with functional polyamino acids for heavy metal sorption. Lagmuir, 15, 6346–6357.

    Article  CAS  Google Scholar 

  • Saucedo-Rivalcoba, V., Martinez-Hernandez, A. L., Martínez Barrera, G., Velasco Santos, C., & Castaño Meneses, V.M. (2010), (Chicken Feather Keratin)/Polyurethane membranes, accepted to Applied Physics A.

  • Sayed, S. A., Saleh, S. S., & Hasan, E. E. (2005). Removal of some polluting metals from industrial water using chicken feathers. Desalination, 181, 243–255.

    Article  CAS  Google Scholar 

  • Schmidt, W. F. (1998). Innovative feather utilization strategies. Proceedings of the 1998 National Poultry Waste Management Symposium, 19–22.

  • Schrooyen, P. M. M., Dijkstra, P. J., Oberthür, R. C., Bantjes, A., & Feijen, J. (2000). Partially carboxymethylated feather keratin. 1. Properties in aqueous systems. Journal of Agricultural and Food Chemistry, 48, 4326–4334.

    Article  CAS  Google Scholar 

  • Schrooyen, P. M. M., Dijkstra, P. J., Oberthür, R. C., Bantajes, A., & Feijen, J. (2001). Partially carboxymethylated feather keratins. 2. Thermal and Mechanical properties of films. Journal of Agricultural and Food Chemistry, 49, 221–230.

    Article  CAS  Google Scholar 

  • Wang, K. Y., & Chung, T. S. (2006). Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. Journal of Membrane Science, 281, 307–315.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. G. Hernández-Padron for assistance in IR measurements, Miss Alicia del Real for assistance in SEM, and Dr. Rosalba Fuentes for assistance in BET. Ana Laura Martinez-Hernandez acknowledges the financial support of LOREAL-Mexico under the program “For Women in Science” and DGEST Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Martínez-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saucedo-Rivalcoba, V., Martínez-Hernández, A.L., Martínez-Barrera, G. et al. Removal of Hexavalent Chromium from Water by Polyurethane–Keratin Hybrid Membranes. Water Air Soil Pollut 218, 557–571 (2011). https://doi.org/10.1007/s11270-010-0668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0668-6

Keywords

Navigation