Skip to main content
Log in

Biochemistry of TBT-Degrading Marine Pseudomonads Isolated from Indian Coastal Waters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tributyltin (TBT) is a very effective biocide and an active ingredient in antifouling paints. Screening along the Indian coast yielded 49 bacterial isolates capable of TBT assimilation. The screening was done based on the ability of bacteria to grow in mineral salt medium (MSM) containing TBT as the sole source of carbon. All the isolates produced exopolysaccharides (biosurfactants) in the medium which aid in emulsification and thus ease bioavailability of TBT. Five isolates were identified as potent TBT degraders (namely, Pseudomonas pseudoalcaligenes, Pseudomonas stutzeri, Pseudomonas mendocina, Pseudomonas putida, and Pseudomonas balearica) based on their biomass production in MSM containing TBT as the sole source of carbon. In addition to evaluating the potential of individual bacterial strains, the study also focused on using a consortium of bacteria to explore their synergistic effect when grown on TBT. Further tests like growth profile, rhamnolipid secretion profile, extracellular protein secretion profile, and detection of siderophores were performed on these isolates when grown in MSM supplemented with 2 mM TBT concentration. Emulsification activity of the crude extracellular polysaccharides against kerosene was evaluated. It can be therefore inferred that TBT degradation by these marine pseudomonads is a two-step process: (a) dispersion of TBT in the aqueous phase and (b) tin–carbon bond cleavage by siderophores affecting debutylation of TBT. The consortium of bacteria may be effective in the treatment of TBT-contaminated waste water in dry docks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Tahhan, R., Sandrin, T. R., Bodour, A. A., & Maier, R. M. (2000). Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environmental Microbiology, 66, 3262–3268.

    Article  CAS  Google Scholar 

  • Balba, M. T., Al-Shayji, Y., Al-Awadhi, N., & Yateem, A. (2002). Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil and Sediment Contamination, 11, 41–55.

    Article  Google Scholar 

  • Bangkedphol, S., Keenan, H. E., Davidson, C., Sakultantimetha, A., & Songsasen, A. (2009). The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere, 77, 1326–1332.

    Article  CAS  Google Scholar 

  • Barug, D. (1981). Microbial degradation of bis(tributyltin) oxide. Chemosphere, 10, 1145–1154.

    Article  CAS  Google Scholar 

  • Blunden, S. J., & Chapman, A. (1986). Organotin compounds in the environment. In P. J. Craig (Ed.), Organometallic compounds in the environment (pp. 111–159). London: Longman.

    Google Scholar 

  • Brandsch, R., Nowak, K. E., Binder, N., & Jastorff, B. (2001). Investigations concerning the sustainability of remediation by land deposition of tributyltin contaminated harbour sediments. Journal of Soils and Sediments, 1(4), 234–236.

    Article  CAS  Google Scholar 

  • Bryan, G. W., & Gibbs, P. E. (1991). Impact of low concentration of tribityltin (TBT) on marine organisms: A Review. In M. C. Newman & A. W. McIntosh (Eds.), Metal ecotoxicology: Concepts and applications (pp. 323–361). Ann Arbor: Lewis.

    Google Scholar 

  • Errécalde, O., Astruc, M., Maury, G., & Pinel, R. (1995). Biotransformation of butyltin compounds using pure strains of microorganisms. Applied Organometallic Chemistry, 9, 23–28.

    Article  Google Scholar 

  • Gadd, G. M., Grayl, D. J., & Newby, P. J. (1990). Role of melanin in fungal biosorption of tributyltin chloride. Applied Microbiology and Biotechnology, 34(1), 116–121.

    Article  CAS  Google Scholar 

  • Garg, A., Meena, R. M., Jadhav, S., & Bhosle, N. B. (2011). Distribution of butyltins in the waters and sediments along the coast of India. Marine Pollution Bulletin, 62, 423–431.

    Article  CAS  Google Scholar 

  • Gibson, C. P. & Wilson, S. P. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101–112.

    Article  CAS  Google Scholar 

  • Höfte, M. (1993). Classes of microbial siderophores. In L. Barton & B. Hemming (Eds.), Iron chelation in plants and soil microorganisms (pp. 3–26). San Diego: Academic.

    Google Scholar 

  • Horiguchi, T., Kojima, M., Hamada, F., Kajikawa, A., Shiraishi, H., & Morita, M. (2006). Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations. Environmental Health Perspectives, 114, 13–19.

    Article  Google Scholar 

  • Inoue, H., Takimura, O., Fuse, H., Murakami, K., Kamimura, K., & Yamaoka, Y. (2000). Degradation of triphenyltin by a fluorescent pseudomonad. Applied and Environmental Microbiology, 66, 3492–3498.

    Article  CAS  Google Scholar 

  • Inoue, H., Takimura, O., Kawaguchi, K., Nitoda, T., Fuse, H., Murakami, K., et al. (2003). Tin–carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Applied and Environmental Microbiology, 69(2), 878–883.

    Article  CAS  Google Scholar 

  • Inoue, S., Abe, S., Oshima, Y., Kai, N., & Honjo, T. (2006). Tributyltin contamination of bivalves in coastal areas around northern Kyushu, Japan. Environmental Toxicology, 21(3), 244–249.

    Article  CAS  Google Scholar 

  • Kawai, S., Kurokawa, Y., Harino, H., & Fukushima, M. (1998). Degradation of tributyltin by a bacterial strain isolated from polluted river water. Environmental Pollution, 102, 259–263.

    Article  CAS  Google Scholar 

  • Kim, S. K., & Kim, J. H. (2008). Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis. International Journal of Toxicology, 27, 175–182.

    Article  CAS  Google Scholar 

  • Kotrikla, A. (2009). Environmental management aspects for TBT antifouling wastes from the shipyards. Journal of Environmental Management, 90, 77–85.

    Article  Google Scholar 

  • Mahtani, S., & Mavinkurve, S. (1979). Microbial purification of longifolene—a sesquiterpene. Journal of Fermentation Technology, 57, 529–533.

    CAS  Google Scholar 

  • Mukherjee, A., Mohan Rao, K. V., & Ramesh, U. S. (2009). Predicted concentrations of biocides from antifouling paints in Vishakhapatnam Port. Journal of Environmental Management, 90, 51–59.

    Article  Google Scholar 

  • Orsler, R. J., & Holland, G. E. (1982). Degradation of tributyltin oxide by fungal culture filtrates. International Biodeterioration Bulletin, 18(4), 95–98.

    CAS  Google Scholar 

  • Pamp, S. J., & Tolker-Nielsen, T. (2007). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 189(6), 2531–2539.

    Article  CAS  Google Scholar 

  • Rodríguez, J. G., Solaun, O., Larreta, J., Segarra, M. J. B., Franco, J., Alonso, J. I. G., et al. (2010). Baseline of butyltin pollution in coastal sediments within the Basque Country (northern Spain), in 2007–2008. Marine Pollution Bulletin, 60, 139–151.

    Article  Google Scholar 

  • Roy, U., & Bhosle, S. (2005). Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM-5224. Applied Organometallic Chemistry, 20(1), 5–11.

    Article  Google Scholar 

  • Roy, U., Dubey, S. K., & Bhosle, S. (2004). Tributyltin chloride-utilizing from marine ecosystem of west of India. Current Science, 702(86), 5–10.

    Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56.

    Article  CAS  Google Scholar 

  • Seligman, P. F., Valkirs, A. O., Stang, P. M., & Lee, R. F. (1988). Evidence for rapid degradation of TBT in a marina. Marine Pollution Bulletin, 19(10), 531–534.

    Article  CAS  Google Scholar 

  • Stasinakis, A. S., Thomaidis, N. S., Nikolaou, A., & Kantifes, A. (2005). Aerobic biodegradation of organotin compounds in activated sludge batch reactors. Environmental Pollution, 134(3), 431–438.

    Article  CAS  Google Scholar 

  • Sudaryanto, A., Takahashi, S., Monirith, I., Ismail, A., Muchtar, M., Zheng, J., et al. (2002). Asia-Pacific mussel watch: monitoring of butyltin contamination in coastal waters of Asian developing countries. Environmental Toxicology and Chemistry, 21(10), 2119–2130.

    Article  CAS  Google Scholar 

  • Sun, G.-X., Zhou, W.-Q., & Zhong, J.-J. (2006). Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Applied and Environmental Microbiology, 72, 6411–6413.

    Article  CAS  Google Scholar 

  • Urum, K., Pekdemir, T., & Gopur, M. (2003). Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Safety and Environmental Protection: Transaction Of the Institution Of Chemical Engineers, 81, 203–209.

    Article  CAS  Google Scholar 

  • Visoottiviseth, P., Kruawan, K., Bhumiratana, A., & Wilairat, P. (1994). Isolation of bacterial culture capable of degrading triphenyltin pesticides. Applied Organometallic Chemistry, 9(1), 1–9.

    Article  Google Scholar 

  • Waldock, M. J., Waite, M. E., & Thain, J. E. (1988). Inputs of TBT to the marine environment from shipping activity in the UK. Environmental Technology Letters, 9, 999–1010.

    Article  CAS  Google Scholar 

  • Yamaoka, Y. (2003). Development of an organotin removal process utilizing marine bioremediation. AIST Today, 3(3), 18.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of the project titled “Assessing impacts of TBT on multiple coastal uses (TBTIMPACTS)” funded by European Commission. We are grateful to Dr. Shanta Achutankutty (National Institute of Oceanography, Kochi) for identification of bacterial cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramya Sampath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampath, R., Venkatakrishnan, H., Ravichandran, V. et al. Biochemistry of TBT-Degrading Marine Pseudomonads Isolated from Indian Coastal Waters. Water Air Soil Pollut 223, 99–106 (2012). https://doi.org/10.1007/s11270-011-0842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0842-5

Keywords

Navigation