Skip to main content

Advertisement

Log in

The Bioaccumulation Performance of Reeds and Cattails in a Constructed Treatment Wetland for Removal of Heavy Metals in Landfill Leachate Treatment (Etueffont, France)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and compare the capacities of cattail (Typha latifolia L.) and reed (Phragmites australis L.) for heavy metal storage in the phytomass. Samples were studied in the fourth of the four interconnected natural lagooning basins of a constructed treatment wetland, developed as an integrated pilot system for the treatment of leachates in a domestic landfill site at Etueffont (Territoire de Belfort, France). The efficiency of the lagooning system was evaluated through physical and chemical parameter measurements over a period of three seasons. Anion/cation and heavy metal concentrations were sampled and analyzed in water flowing into and out of the lagooning basin. Simultaneously, reed and cattail biomass samples (roots/rhizomes, shoots) were collected at both inflow and outflow, and the biomass characteristics were determined. The average above-ground biomass of T. latifolia and P. australis varied, respectively, from 0.41 to 1.81 kg DW m−2 in the fall, 0.31 to 1.34 kg DW m−2 in winter, and 0.38 to 1.68 kg DW m−2 in spring, with significant seasonal variations. The greatest mean concentrations of heavy metals were found in the below-ground plant parts of the two species during the spring season. The average standing stock of heavy metals was higher in the below-ground than in the above-ground phytomass, whatever the season. With the exception of nickel, heavy metal concentrations in the inflow were correlated to the plant content of both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksoy, A., Duman, F., & Sezen, G. (2005). Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis). Freshwater Ecology, 20, 783–785.

    Article  CAS  Google Scholar 

  • Blaky, N. C. (1992). Model prediction of landfill leachate production. London: Elsevier Applied Science.

    Google Scholar 

  • Bonanno, G., & Lo Giudice, R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.

    Article  CAS  Google Scholar 

  • Bookter, T. J. B., & Ham, R. (1982). Decomposition of solid waste in test lysimeters. Journal Environmental Engineering Division ASCE, 108, 1147–1170.

    Google Scholar 

  • Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144, 967–975.

    Article  CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytomediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.

    Article  CAS  Google Scholar 

  • Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Carranza-Alvarez, C., Alonso-Castro, A. J., Alfaro-De La Torre, M. C., & Garcia-De La Cruz, R. F. (2008). Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water, Air, and Soil Pollution, 188, 297–309.

    Article  CAS  Google Scholar 

  • Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.

    Article  CAS  Google Scholar 

  • DIN ISO 11466. (1997). Soil quality—extraction of trace elements soluble in aqua regia. Geneva: ISO.

    Google Scholar 

  • Duman, F., Cicek, M., & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology, 16, 457–463.

    Article  CAS  Google Scholar 

  • Ennabili, A., Ater, M., & Radoux, M. (1998). Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquatic Botany, 62, 45–56.

    Article  Google Scholar 

  • Fernandez, J., & De Miguel, E. (2005). Results of LIFE-Environment project “Macrophytes”, executed in Lorca (Murcia, Spain). In: Fernandez, J., Cirujano, S., De Miguel, E. (Eds.), Proceeding of International Meeting on “Phytodepuration” (pp. 151–157). Lorca, Spain.

  • Gray, S., Kinross, J., Read, P., & Marland, A. (2000). The nutrient assimilative capacity of maerl as a substrate in constructed wetland system for waste treatment. Water Research, 34, 2183–2190.

    Article  CAS  Google Scholar 

  • Grisey, E., Belle, E., Dat, J., Mudry, J., & Aleya, L. (2010). Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests. Desalination, 261, 162–168.

    Article  CAS  Google Scholar 

  • Hardej, M., & Ozimek, T. (2002). The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecological Engineering, 18, 343–350.

    Article  Google Scholar 

  • Hocking, P. J. (1989a). Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Australian Journal of Marine & Freshwater Research, 40, 421–444.

    Article  CAS  Google Scholar 

  • Hocking, P. J. (1989b). Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. II. Individual shoots. Australian Journal of Marine & Freshwater Research, 40, 445–464.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Boca Raton: CRC.

    Google Scholar 

  • Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering, 20, 157–169.

    Article  Google Scholar 

  • Karpiscak, M. M., Whiteaker, L. R., Artiola, J. F., & Foster, K. E. (2001). Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Science and Technology, 44, 455–462.

    CAS  Google Scholar 

  • Keller, B. E. M., Lajtha, K., & Cristofor, S. (1998). Trace metals concentration in the sediments and plants of the Danube delta, Romania. Wetlands, 40, 42–50.

    Article  Google Scholar 

  • Khattabi, H., & Aleya, L. (2007). The dynamics of macro-invertebrate assemblages in response to environmental change in four basins of the Etueffont landfill leachate (Belfort, France). Water, Air, and Soil Pollution, 185, 63–77.

    Article  Google Scholar 

  • Khattabi, H., Aleya, L., & Mania, J. (2006). Spatio-temporal evolution and characterization of phytoplankton populations in landfill leachate treatment basins. Water, Air, and Soil Pollution, 174, 107–125.

    Article  CAS  Google Scholar 

  • Khattabi, H., Belle, E., Servais, P., & Aleya, L. (2007). Temporal and spatial fluctuations in bacterial abundances in 4 basins of a landfill leachate treatment (Etueffont, France). Comptes Rendus Biologie, 330, 429–438.

    Article  Google Scholar 

  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long term composition of MSW landfill leachate. Environmental Science and Technology, 32, 297–336.

    Article  CAS  Google Scholar 

  • Larsen, V. J., & Schierup, H. H. (1981). Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and a non-polluted lake: Seasonal changes in heavy metal content of above-ground biomass and decomposing leaves of Phragmites australis (Cav.) Trin. Aquatic Botany, 11, 211–230.

    Article  CAS  Google Scholar 

  • Lesage, E., Rousseau, D. P. L., Meers, E., Tack, F. M. G., & De Pauw, N. (2006). Accumulation of metals in the sediment and reed biomass of a combined constructed wetland treating domestic wastewater. Water, Air, and Soil Pollution, 183, 253–264.

    Article  Google Scholar 

  • Lesage, E., Rousseau, D. P. L., Meers, E., Tack, F. M. G., & De Pauw, N. (2007). Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Science of the Total Environment, 380, 102–115.

    Article  CAS  Google Scholar 

  • Liang, Y., & Wong, M. H. (2003). Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere, 52, 1647–1658.

    Article  CAS  Google Scholar 

  • Maddison, M., Soosaar, K., Mauring, T., & Mander, Ü. (2009). The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination, 246, 120–128.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Upadhyay, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment, 141, 49–58.

    Article  CAS  Google Scholar 

  • Obarska-Pempkowiak, H., & Klimkowska, K. (2000). Distribution of nutrients and heavy metals in a constructed wetland system. Chemosphere, 39, 303–312.

    Article  Google Scholar 

  • Obarska-Pempkowiak, H., Haustein, E., & Wojciechowska, E. (2005). Distribution of heavy metals in vegetation of constructed wetlands in agricultural catchment. In J. Vymazal (Ed.), Natural and constructed wetlands: Nutrients, metals and management (pp. 125–134). Leiden: Backhuys.

    Google Scholar 

  • Peverly, J. H., Surface, J. M., & Wang, T. (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecological Engineering, 5, 21–35.

    Article  Google Scholar 

  • Romero, J. A., Comin, F. A., & Garcia, C. (1999). Restored wetlands as filters to remove nitrogen. Chemosphere, 39, 323–332.

    Article  CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plants nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. The Science of the Total Environment, 281, 87–98.

    Article  CAS  Google Scholar 

  • Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.

    Article  Google Scholar 

  • Schierup, H. H., & Larsen, V. J. (1981). Macrophyte cycling of zinc, copper, lead, and cadmium in the littoral zone of a polluted and a non-polluted lake. I. Availability, uptake and translocation of heavy metals in Phragmites australis. Aquatic Botany, 11, 197–210.

    Article  CAS  Google Scholar 

  • Schwarzbauer, J., Heim, S., Brinker, S., & Littke, R. (2002). Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Research, 36, 2275–2287.

    Article  CAS  Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271–280.

    Article  CAS  Google Scholar 

  • Tanner, C. C. (1996). Plants for constructed wetland treatment systems, a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7, 59–83.

    Article  Google Scholar 

  • Toet, S., Bouwman, M., Cevaal, A., & Verhoeven, J. T. A. (2005). Nutrient removal through autumn harvest of Phragmites australis and Typha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. Journal of Environmental Science and Health, Part A, 40, 1133–1156.

    Article  CAS  Google Scholar 

  • VDLUFA. (1996). Methodenbuch, VII—Umweltanalytik. Bonn: Verband Deutscher landwirtschaftlicher Untersuchungs und Forschungsanstalten.

    Google Scholar 

  • Vymazal, J. (2004). Removal of phosphorus via harvesting of emergent vegetation in constructed wetlands for wastewater treatment. In A. Liénard (Ed.), Proceedings of Ninth International Conference on “Wetland Systems for Water Pollution Control” (pp. 415–422). Paris: IWA and ASTEE.

    Google Scholar 

  • Vymazal, J., & Krása, P. (2003). Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Science and Technology, 48, 299–305.

    CAS  Google Scholar 

  • Vymazal, J., & Kröpfelová, L. (2008). Is concentration of dissolved oxygen a good indicator of processes en filtration beds of horizontal-flow constructed wetlands? In J. Vymazal (Ed.), Wastewater treatment, plant dynamics and management in constructed and natural wetlands (pp. 311–317). Czech Republic: Springer.

    Chapter  Google Scholar 

  • Vymazal, J., Svehla, J., Kröpfelovà, L., & Chrastny, V. (2007). Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 380, 154–162.

    Article  CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Weis, J. S., Glover, T., & Weis, P. (2004). Interactions of metals affect their distribution in tissues of Phragmites australis. Environmental Pollution, 13, 409–415.

    Article  Google Scholar 

  • Wild, U., Kamp, T., Lenz, A., Heinz, S., & Pfadenhauer, J. (2002). Vegetation development, nutrient removal and trace gas fluxes in constructed Typha wetland. In U. Mander & P. Jenssen (Eds.), Natural wetlands for wastewater treatment in cold climates. Advances in ecological sciences, vol. 12 (pp. 101–126). Southampton: WIT.

    Google Scholar 

  • Windham, L., Wies, J. S., & Weis, P. (2001). Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Marine Pollution Bulletin, 42, 811–816.

    Article  CAS  Google Scholar 

  • Windham, L., Wies, J. S., & Weis, P. (2003). Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56, 63–72.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J., Wong, M. H., & Willis, A. J. (1997). Zinc, lead, and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Annals of Botany, 80, 363–370.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (2003). Copper tolerance, uptake and accumulation by Phragmites australis. Chemosphere, 50, 795–800.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants. I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Hamon, R. E., Lombi, E., Mc Laughlin, M. J., & Mc Grath, S. P. (2002). Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53, 535–543.

    Article  CAS  Google Scholar 

  • Zu, Y. Q., Li, Y., Chen, J. J., Chen, H. Y., Qin, L., & Schvartz, C. (2005). Hyperaccumulation of Pb Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environmental International, 31, 755–762.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the SICTOM (Solid Waste Management Service) of Etueffont (Territoire de Belfort, France) and the ADEME (French Environment and Energy Management Agency) for their technical and financial support. The authors wish to thank the assistance of the two reviewers who contributed to improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisey, E., Laffray, X., Contoz, O. et al. The Bioaccumulation Performance of Reeds and Cattails in a Constructed Treatment Wetland for Removal of Heavy Metals in Landfill Leachate Treatment (Etueffont, France). Water Air Soil Pollut 223, 1723–1741 (2012). https://doi.org/10.1007/s11270-011-0978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0978-3

Keywords

Navigation