Skip to main content
Log in

Removal of Residual Oils from Palm Oil Mill Effluent by Adsorption on Natural Zeolite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of residue oil from palm oil mill effluent using natural zeolite was investigated in this study. The adsorption was performed in batch mode, and the effect of different operational parameters such as pH, dose of adsorbent, stirring rate, contact time and initial oil concentration were explored. It was found that the pH plays a major role in the adsorption process. Isotherm data best fitted with the Freundlich model, and kinetic data followed the pseudo-second-order kinetic model. The results obtained demonstrated that the oil removal efficiencies by natural zeolite were up to 70 % at a pH of 3.0 and 50 min of contact time. The adsorbent material also has been characterised by X-ray diffraction, X-ray fluorescence and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257. doi:10.1016/j.biortech.2005.12.006.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2005). Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Research, 39(12), 2483–2494. doi:10.1016/j.watres.2005.03.035.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2006). Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chemical Engineering Journal, 118(1–2), 99–105. doi:10.1016/j.cej.2006.02.001.

    Article  CAS  Google Scholar 

  • Amuda, O. S., Giwa, A. A., & Bello, I. A. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal, 36(2), 174–181. doi:10.1016/j.bej.2007.02.013.

    Article  CAS  Google Scholar 

  • Angelova, D., Uzunov, I., Uzunova, S., Gigova, A., & Minchev, L. (2011). Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 172(1), 306–311.

    Google Scholar 

  • Antti, P. (2004). A biological oil adsorption filter. Marine Pollution Bulletin, 49(11–12), 1006–1012. doi:10.1016/j.marpolbul.2004.07.004.

    Google Scholar 

  • Bektaş, N., & Kara, S. (2004). Removal of lead from aqueous solutions by natural clinoptilolite: equilibrium and kinetic studies. Separation and Purification Technology, 39(3), 189–200. doi:10.1016/j.seppur.2003.12.001.

    Article  Google Scholar 

  • Bernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993). Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator. Bioresource Technology, 43(1), 35–39. doi:10.1016/0960-8524(93)90079-q.

    Article  CAS  Google Scholar 

  • Chester, A. W. & Derouane, E. G. (2001). Zeolite Characterization and Catalysis: Springer Dordrecht Heidelberg London New York.

  • Chow, M. C., & Ho, C. C. (2000). Surface active properties of palm oil with respect to the processing of palm oil. Journal of Oil Palm Research, 12(1), 107–116.

    CAS  Google Scholar 

  • Chow, M. C., & Ho, C. C. (2002). Chemical composition of oil droplets from palm oil mill sludge. Journal of Oil Palm Research, 14(1), 25–34.

    CAS  Google Scholar 

  • Dogan, M., Alkan, M., Demirbas, O., Ozdemir, Y., & Ozmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101.

    Article  CAS  Google Scholar 

  • Eaton, A. D., Franson, M. A. H., Association, A. P. H., Association, A. W. W., & Federation, W. E. (2005). Standard methods for the examination of water & wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insight into the applications of palm oil mill effluent: a renewable utilization of the industrial agricultural waste. Renewable and Sustainable Energy Reviews, 14(5), 1445–1452. doi:10.1016/j.rser.2010.01.015.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in the solution. Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Fu, Y., & Chung, D. D. L. (2011). Coagulation of oil in water using sawdust, bentonite and calcium hydroxide to form floating sheets. Applied Clay Science, 53(4), 634–641. doi:10.1016/j.clay.2011.05.014.

    Article  CAS  Google Scholar 

  • Hameed, B. H., Ahmad, A. L., & Hoon, N. A. (2003). Removal of residual oil from palm oil mill effluent using solvent extraction method. Jurnal Teknologi, 38(f), 33–42.

    Google Scholar 

  • Ho, Y. S., Chiang, T. H., & Hsueh, Y. M. (2005). Removal of basic dye from aqueous solutions using tree fern as a biosorbent. Process Biochemistry, 40, 119–124.

    Article  CAS  Google Scholar 

  • Ibrahim, S., Ang, H.-M., & Wang, S. (2009). Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresource Technology, 100(23), 5744–5749. doi:10.1016/j.biortech.2009.06.070.

    Article  CAS  Google Scholar 

  • Inagaki, M., Kawahara, A., Nishi, Y., & Iwashita, N. (2002). Heavy oil sorption and recovery by using carbon fiber felts. Carbon, 40(9), 1487–1492. doi:10.1016/s0008-6223(01)00319-0.

    Article  CAS  Google Scholar 

  • Inan, H., Dimoglo, A., Şimşek, H., & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electro-coagulation. Separation and Purification Technology, 36(1), 23–31. doi:10.1016/s1383-5866(03)00148-5.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., Loizidou, M. D., & Grigoropoulou, H. P. (2003). Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. Journal of Colloid and Interface Science, 261(1), 49–54. doi:10.1016/s0021-9797(02)00244-8.

    Article  CAS  Google Scholar 

  • Jamil, T. S., Ibrahim, H. S., Abd El-Maksoud, I. H., & El-Wakeel, S. T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258(1–3), 34–40. doi:10.1016/j.desal.2010.03.052.

    Article  CAS  Google Scholar 

  • Kitsopoulos, K. P. (1999). Cation-exchange capacity (CEC) of natural zeolite volcaniclastic materials: applicability of the ammonium acetate saturation (AMAS) method. Clays and Clay Minerals, 47(6), 688–969.

    Article  CAS  Google Scholar 

  • Kocherginsky, N. M., Tan, C. L., & Lu, W. F. (2003). Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane. Journal of Membrane Science, 220(1–2), 117–128. doi:10.1016/s0376-7388(03)00223-0.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum J. American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, L., Ding, L., Tu, Z., Wan, Y., Clausse, D., & Lanoisellé, J.-L. (2009). Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system. Journal of Membrane Science, 342(1–2), 70–79. doi:10.1016/j.memsci.2009.06.023.

    Article  CAS  Google Scholar 

  • Ma, A. N. (2000). Environmental management for the palm oil industry. Palm Oil Development, 30, 1–9.

    Google Scholar 

  • Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination, 268(1–3), 117–125. doi:10.1016/j.desal.2010.10.007.

    Article  CAS  Google Scholar 

  • Malaysian Department of Environment (DOE). (1999). Industrial processes and the environment (Vol. 3). Kuala Lumpur: Department of Environment Malaysia.

    Google Scholar 

  • Milán, Z., Sánchez, E., Weiland, P., Borja, R., Martı, et al. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, 80(1), 37–43. doi:10.1016/s0960-8524(01)00064-5.

    Article  Google Scholar 

  • Moazed, H., & Viraraghavan, T. (2005a). Removal of oil from water by bentonite organoclay. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 9, 130–134.

    Google Scholar 

  • Moazed, H., & Viraraghavan, T. (2005b). Use of organo-clay/anthracite mixture in the separation of oil from oily waters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 27, 101–112.

    Google Scholar 

  • Mohan, D., & Singh, K. P. (2002). Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 36(9), 2304–2318. doi:10.1016/s0043-1354(01)00447-x.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(1–3), 351–359. doi:10.1016/j.jhazmat.2009.03.104.

    Article  CAS  Google Scholar 

  • Montalvo, S., Díaz, F., Guerrero, L., Sánchez, E., & Borja, R. (2005). Effect of particle size and doses of zeolite addition on anaerobic digestion processes of synthetic and piggery wastes. Process Biochemistry, 40(3–4), 1475–1481. doi:10.1016/j.procbio.2004.06.032.

    Article  CAS  Google Scholar 

  • Moosai, R., & Dawe, R. A. (2003). Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Separation and Purification Technology, 33(3), 303–314. doi:10.1016/s1383-5866(03)00091-1.

    Article  CAS  Google Scholar 

  • Moriwaki, H., Kitajima, S., Kurashima, M., Hagiwara, A., Haraguchi, K., Shirai, K., et al. (2009). Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water. Journal of Hazardous Materials, 165(1–3), 266–270. doi:10.1016/j.jhazmat.2008.09.116.

    Article  CAS  Google Scholar 

  • Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48. doi:10.1016/j.minpro.2009.02.005.

    Article  CAS  Google Scholar 

  • Mysore, D., Viraraghavan, T. & Yee-Chung, J. (2005). Treatment of oily waters using vermiculite. Water Research, 39(12), 2643–2653.

    Google Scholar 

  • Panpanit, S., & Visvanathan, C. (2001). The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion. Journal of Membrane Science, 184(1), 59–68. doi:10.1016/s0376-7388(00)00609-8.

    Article  CAS  Google Scholar 

  • Pitcher, S. K., Slade, R. C. T., & Ward, N. I. (2004). Heavy metal removal from motorway stormwater using zeolites. Science of the Total Environment, 334–335, 161–166. doi:10.1016/j.scitotenv.2004.04.035.

    Article  Google Scholar 

  • Rajakovic, V., Aleksic, G., Radetic, M., & Rajakovic, Lj. (2007). Efficiency of oil removal from real wastewater with different sorbent materials. Journal of Hazardous Materials, 143(1–2), 494–499.

    Google Scholar 

  • Ramaswamy, B., Kar, D. D., & De, S. (2007). A study on recovery of oil from sludge containing oil using froth flotation. Journal of Environmental Management, 85(1), 150–154. doi:10.1016/j.jenvman.2006.08.009.

    Article  CAS  Google Scholar 

  • Singh, G., Huan, L. K., Leng, T., & Kow, D. L. (1999). Oil palm and the environment. A Malaysian perspective. Malaysian OIil Palm Grower’s Council, 83–111.

  • Sokker, H. H., El-Sawy, N. M., Hassan, M. A., & El-Anadouli, B. E. (2011). Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials, 190(1–3), 359–365. doi:10.1016/j.jhazmat.2011.03.055.

    Article  CAS  Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2008). Removal of oil by walnut shell media. Bioresource Technology, 99(17), 8217–8220.

    Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2010). Oil removal from water using biomaterials. Bioresource Technology, 101(17), 6594–6600. doi:10.1016/j.biortech.2010.03.079.

    Article  CAS  Google Scholar 

  • Sun, X.-F., Sun, R., & Sun, J.-X. (2002). Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. Journal of Agricultural and Food Chemistry, 50, 6428–6433.

    Google Scholar 

  • Sun, X.-F., Sun, R. C., & Sun, J. X. (2003) A convenient acetylation of sugarcane bagasse using NBS as a catalyst for the preparation of oil sorption-active materials. Journal of Materials Science, 38, 3915–3923.

    Google Scholar 

  • Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154(1–3), 337–346. doi:10.1016/j.jhazmat.2007.10.031.

    Article  CAS  Google Scholar 

  • Vlaev, L., Petkov, P., Dimitrov, A., & Genieva, S. (2011). Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 957–964.

    Google Scholar 

  • Watcharasing, S., Kongkowit, W., & Chavadej, S. (2009). Motor oil removal from water by continuous froth flotation using extended surfactant: effects of air bubble parameters and surfactant concentration. Separation and Purification Technology, 70(2), 179–189. doi:10.1016/j.seppur.2009.09.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. S. Ismail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavandi, M.A., Haddadian, Z., Ismail, M.H.S. et al. Removal of Residual Oils from Palm Oil Mill Effluent by Adsorption on Natural Zeolite. Water Air Soil Pollut 223, 4017–4027 (2012). https://doi.org/10.1007/s11270-012-1169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1169-6

Keywords

Navigation