Skip to main content
Log in

Cr(VI) Adsorption and Desorption on Soils and Biosorbents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We study the adsorption and desorption of chromium on two soils (a forest soil and a vineyard soil), both individually or after being combined with ground mussel shell, and on various materials (mussel shell, pyritic material from a dump site, and slate processing fines). The adsorption capacity depends mainly on the initial Cr concentration, on the pH, and on the abundance of noncrystalline Fe. The highest adsorption percentage (94 %) corresponds to the pyritic material, which also shows very low desorption rates (1.4 %), has the lowest pH, and has the highest concentration of noncrystalline Fe. The adsorption isotherms in most cases fit the Freundlich and Lineal models, rather than the Langmuir model, with no easily predictable maximum for chromium adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeynaike, A., Wang, L., Jones, M. I., & Patterson, D. A. (2011). Pyrolysed powdered mussel shells for eutrophication control: Effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia-Pacific Journal of Chemical Engineering, 6, 231–243.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Akpinar, D. (2001). Competitive biosorption of phenol and chromium (VI) from binary mixtures onto dried anaerobic activated sludge. Biochemical Engineering Journal, 7, 183–193.

    Article  CAS  Google Scholar 

  • Allison, J.D., Brown, D.S., & Novo-Gradac K.J. (1991). MINTEQA2/PRODEFA2: A geochemical assessment model for environmental systems (version 3.0). Athens: US EPA.

  • Álvarez, E., Fernández-Sanjurjo, M. J., Núñez, A., Seco, N., & Corti, G. (2012). Aluminum fractionation and speciation in bulk and rhizosphere of a grass soil amended with mussel shells or lime. Geoderma, 173–174, 322–329.

    Article  Google Scholar 

  • Arnesen, A. K. M., & Krogstad, T. (1998). Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Ardal in Western Norway. Water, Air, and Soil Pollution, 103, 357–373.

    Article  CAS  Google Scholar 

  • Blakemore, L. C. (1978). Exchange complex dominated by amorphous material (ECDAM). In G. D. Smith (Ed.), The andisol proposal (pp. 21–22). Lower Hutt: Soil Bureau.

    Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., & Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science and Technology, 37, 4449–4456.

    Article  CAS  Google Scholar 

  • Demiral, H., Demiral, I., Tümsek, F., & Karabacakoglu, B. (2008). Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 144, 188–196.

    Article  CAS  Google Scholar 

  • Dong, D., Zhao, X., Hua, X., Liu, J., & Gao, M. (2009). Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Journal of Hazardous Materials, 162, 1261–1268.

    Article  CAS  Google Scholar 

  • Faghihian, H., & Bowman, R. S. (2005). Adsorption of chromate by clinoptilolite exchanged with various metal cations. Water Research, 39, 1099–1104.

    Article  CAS  Google Scholar 

  • Fernández-Calviño, D., Pérez-Novo, C., Bermudez-Couso, A., López-Periago, J. E., & Arias-Estévez, M. (2010). Batch and stirred flow reactor experiments on Zn sorption in acid soils, Cu competition. Geoderma, 159, 417–424.

    Article  Google Scholar 

  • Gago, C., Romar, A., Fernández-Marcos, M. L., & Álvarez, E. (2012). Fluorine sorption by soils developed from various parent materials in Galicia (NW Spain). Journal of Colloid and Interface Science, 374, 232–236.

    Article  CAS  Google Scholar 

  • Gode, F., & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, 119, 175–182.

    Article  CAS  Google Scholar 

  • Guitián, F., & Carballas, T. (1976). Técnicas de análisis de suelos. Pico Sacro, Santiago de Compostela

  • Guo, Y. P., Yang, S. F., Yu, K. F., Wang, Z. C., & Xu, H. D. (2002). Adsorption of Cr(VI) on micro- and mesoporous rice husk based-active carbon Mater. Chemical Physics, 78, 132–137.

    CAS  Google Scholar 

  • Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342(1), 135–141.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T. A., Siddiqui, M. N., & Agarwal, S. (2012). Chromium removal from water by activated carbon developed from waste rubber tires. Environmental Science and Pollution Research. doi:10.1007/s11356-012-0950-9.

  • Higuera-Cobos, O. F., Florez-García, L. C., & Arroyave-Londoño, J. F. (2009). Estudio de la biosorción de cromo con hoja de café. Ingeniería, Investigación y Tecnología, 29, 59–64.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Khezami, L., & Capart, R. (2005). Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous Materials, 123, 223–231.

    Article  CAS  Google Scholar 

  • Koby, M. (2009). Adsorption, kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon. Adsorption Science and Technology, 22, 51–64.

    Article  Google Scholar 

  • Köhler, S., Cubillas, P., Rodríguez, J. D., Bauer, C., & Prieto, M. (2007). Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science and Technology, 41, 112–118.

    Article  Google Scholar 

  • Lawrence, K., & Li, Y. (2006). Chemical reduction/oxidation. Handbook of Environmental Engineering., 4, 483–519.

    Google Scholar 

  • Lin, Y. T., & Huang, C. P. (2008). Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Separation and Purification Technology, 63, 191–199.

    Article  CAS  Google Scholar 

  • Mahvi, A. H., Nabizadeh, R., Gholami, F., & Khairi, A. (2007). Adsorption of chromium from wastewater by Platanus orientalis leaves. Iranian Journal of Environmental Health Science & Engineering, 4, 191–196.

    CAS  Google Scholar 

  • Miretzkya, P., & Fernandez Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180, 1–19.

    Article  Google Scholar 

  • Monterroso, C., Fernández-Marcos, M. L., & Alvarez, E. (1996). Factors influencing phosphorus adsorption in mine soil in Galicia, Spain. The Science of the Total Environment, 180, 137–145.

    Article  Google Scholar 

  • Mor, S., Ravindra, K., & Bishnoi, N. R. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98, 954–957.

    Article  CAS  Google Scholar 

  • Olsen, S.R., & Sommers, L. E. (1982). Phosphorus. In A.L. Page, R.H. Miller, & D.R. Keeney (Eds.), Methods of soil analysis, part 2. Chemical and microbiological properties (p. 403). Madison: Soil Science Society of America.

  • Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 70, 298–305.

    Article  CAS  Google Scholar 

  • Peech, L., Alexander, T., & Dean, L. A. (1947). Methods of soil analysis for soil fertility investigations. Washington: USDA.

    Google Scholar 

  • Pehlivan, E., Kahraman, H., & Pehlivan, E. (2011). Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 92, 65–70.

    Article  CAS  Google Scholar 

  • Peña-Rodríguez, S., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., et al. (2010). Kinetics of Hg(II) adsorption and desorption in calcined mussel shells. Journal of Hazardous Materials, 180, 622–627.

    Article  Google Scholar 

  • Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., & Ramakrisha, S. V. (1999). Biosorption of chromium(VI) by free and immobilized Rhizopus arrhizus. Environmental Pollution, 104, 421–427.

    Article  CAS  Google Scholar 

  • Rawajfih, Z., & Nsour, N. (2008). Thermodynamic analysis of sorption isotherms of chromium (VI) anionic species on reed biomass. The Journal of Chemical Thermodynamics, 40, 846–851.

    Article  CAS  Google Scholar 

  • Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80, 87–89.

    Article  CAS  Google Scholar 

  • Sen, M., & Dastidar, M. G. (2010). Chromium removal using various biosorbents. Iranian Journal of Environmental Health Science & Engineering, 7, 182–190.

    Google Scholar 

  • Sudha-Bai, R., & Abraham, T. E. (2001). Biosorption of Cr (VI) from aqueous solution by Rhizopus nigrificans. Bioresource Technology, 79, 73–81.

    Article  CAS  Google Scholar 

  • Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2002). Biosorption of chromium (VI) form aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technology, 85, 155–158.

    Article  CAS  Google Scholar 

  • Vinodhini, V., & Nilanjana, D. (2009). Biowaste materials as sorbents to remove chromium (VI) from aqueous environment: A comparative study. Journal of Agriculture and Biological Sciences, 4, 19–23.

    Google Scholar 

  • Wang, X. S., Li, Z. Z., & Tao, S. R. (2009). Removal of chromium (VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90, 721–729.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Kydros, K. A., & Matis, K. A. (1995). Removal of hexavalent chromium anions from solutions by pyrite fines. Water Research, 29, 1755–1760.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Government of Galicia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Álvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Pazos, M.T., Garrido-Rodriguez, B., Nóvoa-Muñoz, J.C. et al. Cr(VI) Adsorption and Desorption on Soils and Biosorbents. Water Air Soil Pollut 224, 1366 (2013). https://doi.org/10.1007/s11270-012-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1366-3

Keywords

Navigation