Skip to main content
Log in

Source Apportionment of Personal Exposure to Fine Particulate Matter and Volatile Organic Compounds using Positive Matrix Factorization

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this study was to identify potential sources of personal exposure to fine particulate matter (PM2.5), volatile organic compounds (VOCs), NO2, SO2, and O3 in an urban and industrial area of Turkey between May 2006 and January 2007. Personal exposures were determined once per person in 28 adults over a 24-h period. Energy dispersive X-ray fluorescence and a wavelength dispersive X-ray fluorescence spectrometry were used to measure 15 elements in PM2.5, including Al, As, Ca, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Si, Ti, V, and Zn. The VOCs benzene, toluene, m/p-xylene, o-xylene, ethylbenzene, styrene, cyclohexane, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, hexane, heptane, nonane, octane, decane, undecane, and dodecane were measured by thermal desorption and gas chromatography/flame ionization. Application of positive matrix factorization to the data obtained suggests that motor vehicles, indoor sources, and industry represent the main emission sources of the investigated chemical species. Six major sources smoking (9 %), industry (15 %), gasoline exhaust (21 %), indoor sources (17 %), diesel exhaust (19 %), and crustal (19 %) were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adgate, J. L., Mongin, S. J., Pratt, G. C., Zhang, J., Field, M. P., Ramachandran, G., et al. (2007). Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Science of the Total Environment, 386, 21–32.

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2003). Toxicological Profile Information Sheet, Department of Health and Human Services. Available at: http://www.atsdr.cdc.gov/toxprofiles/index.asp (accessed on Nov 13, 2012).

  • Ahumada, H. T., Whitehead, L., & Blanco, S. (2007). Personal exposure to PM2.5 and element composition—a comparison between outdoor and indoor workers from two Mexican cities. Atmospheric Environment, 41, 7401–7413.

    Article  Google Scholar 

  • Baek, S.-O., Kim, Y.-S., & Perry, R. (1997). Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmospheric Environment, 31, 529–544.

    Article  CAS  Google Scholar 

  • Bardana, E. J., & Montanaro, A. (1996). Indoor air pollution and health. Portland: Oregon Health Sciences University.

    Google Scholar 

  • Begum, B. A., Kim, E., Biswas, S. K., & Hopke, P. K. (2004). Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmospheric Environment, 38, 3025–3038.

    Article  CAS  Google Scholar 

  • Brinkman, G. L., Milford, J. B., Schauer, J. J., Shafer, M. M., & Hannigan, M. P. (2009). Source identification of personal exposure to fine particulate matter using organic tracers. Atmospheric Environment, 43, 1972–1981.

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360, 1233–1242.

    Article  CAS  Google Scholar 

  • Cai, C., Geng, F., Tie, X., Yu, Q., & An, J. (2010). Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, 44, 5005–5014.

    Article  CAS  Google Scholar 

  • Çetin, S., Karademir, A., Pekey, B., & Ayberk, S. (2007). Inventory of emissions of primary air pollutants in the city of Kocaeli, Turkey. Environmental Monitoring and Assessment, 128, 165–175.

    Article  Google Scholar 

  • Delgado-Saborit, J. M., Aquilina, N. J., Meddings, C., Baker, S., & Harrison, R. M. (2011). Relationship of personal exposure to volatile organic compounds to home, work and fixed site outdoor concentrations. Science of the Total Environment, 409, 478–488.

    Article  CAS  Google Scholar 

  • Gallego, J. L. R., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596.

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC). (1986). Tobacco smoking. As evaluated in IARC Monographs (381–421) Lyon, France.

  • Jervis, R. E., Ko, M. M. C., Junliang, T., & Puling, L. (1993). Multivariant analyses of trace element patterns for environmental tracking. Journal of Radioanalytical and Nuclear Chemistry, 169, 363–379.

    Article  CAS  Google Scholar 

  • Jia, C., D'Souza, J., & Batterman, S. (2008). Distributions of personal VOC exposures: a population-based analysis. Environment International, 34, 922–931.

    Article  CAS  Google Scholar 

  • Kim, E., Larson, T. V., Hopke, P. K., Slaughter, C., Sheppard, L. E., & Claiborn, C. (2003). Source identification of PM2.5 in an arid Northwestern U.S. city by positive matrix factorization. Atmospheric Research, 66, 291–305.

    Article  CAS  Google Scholar 

  • Kim, E., Hopke, P. K., & Edgerton, E. S. (2004). Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38, 3349–3362.

    Article  CAS  Google Scholar 

  • Kim, E., Turkiewicz, K., Zulawnick, S. A., & Magliano, K. L. (2010). Sources of fine particles in the South coast area, California. Atmospheric Environment, 44, 3095–3100.

    Article  CAS  Google Scholar 

  • Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35, 4245–4251.

    Article  CAS  Google Scholar 

  • Lai, H. K., Kendall, M., Ferrier, H., Lindup, I., Alm, S., Hanninen, O., et al. (2004). Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmospheric Environment, 38, 6399–6410.

    Article  CAS  Google Scholar 

  • Larson, T., Gould, T., Simpson, C., Liu, L.-J. S., Claiborn, C., & Lewtas, J. (2004). Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. Journal of the Air & Waste Management Association, 54, 1175–1187.

    Article  Google Scholar 

  • Lee, H. J., Gent, J. F., Leaderer, B. P., & Koutrakis, P. (2011). Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts. Science of the Total Environment, 409, 2133–2142.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62, 19–35.

    Article  Google Scholar 

  • Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159–165.

    Article  CAS  Google Scholar 

  • Nkono, N. A., Asubiojo, O. L., Ogunsua, O. A., & Oluwole, A. F. (1999). Levels, sources and speciation of trace elements in the surface waters of the Lagos Lagoon. International Journal of Environmental Studies, 56, 215–230.

    Article  CAS  Google Scholar 

  • Owen, R. B., & Sandhu, N. (2000). Heavy metal accumulation and anthropogenic impacts on Tolo Harbour. Hong Kong. Marine Pollution Bulletin, 40, 174–180.

    Article  CAS  Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23–35.

    Article  CAS  Google Scholar 

  • Pekey, H., & Arslanbaş, D. (2008). The relationship between indoor, outdoor and personal VOC concentrations in homes, offices and schools in the metropolitan region of Kocaeli. Turkey. Water, Air, and Soil Pollution, 191, 113–129.

    Article  CAS  Google Scholar 

  • Pekey, B., Bozkurt Bulut, Z., Pekey, H., Dogan, G., Zararsız, A., Efe, N., et al. (2010). Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli city, Turkey. Indoor Air, 20, 112–125.

    Article  CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska: 2. Elemental composition and sources. Journal of Geophysical Research-Atmospheres, 103(D15), 19045–19057.

    Article  CAS  Google Scholar 

  • Republic of Turkey, Prime Ministry State Planning Organization (SPO). (2000a). Eighth five-year development plan, Iron and Steel industry special expertise commission report (pp 217). Ankara, Turkey.

  • Republic of Turkey, Prime Ministry State Planning Organization (SPO). (2000b). Eighth five-year development plan, Chemical industry special expertise commission report (pp 6). Ankara, Turkey.

  • Santos, I. R., Silva, E. V., Schaefer, C. E. G. R., Albuquerque, M. R., & Campos, L. S. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic station, King George Island. Marine Pollution Bulletin, 50, 185–194.

    Article  CAS  Google Scholar 

  • Son, B., Breysse, P., & Yang, W. (2003). Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea. Environment International, 29, 79–85.

    Article  CAS  Google Scholar 

  • Song, X. H., Polissar, A. V., & Hopke, P. K. (2001). Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35, 5277–5286.

    Article  CAS  Google Scholar 

  • United State Environmental Protection Agency (US EPA). (2012). SPECIATE data-base version 4.3. Available at: http://www.epa.gov/ttnchie1/software/speciate/ (accessed Nov 13, 2012).

  • Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43, 1141–1151.

    Article  CAS  Google Scholar 

  • Xiang, Y., Delbarre, H., Sauvage, S., Léonardis, T., Fourmentin, M., Augustin, P., et al. (2012). Development of a methodology examining the behaviours of VOCs source apportionment with micro-meteorology analysis in an urban and industrial area. Environmental Pollution, 162, 15–28.

    Article  CAS  Google Scholar 

  • Yatkın, S., & Bayramoğlu, A. (2008). Determination of major natural and anthropogenic source profiles for particulate matter and trace elements in İzmir, Turkey. Chemosphere, 71, 685–696.

    Article  Google Scholar 

  • Zhou, F., Guo, H., & Hao, Z. (2007). Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Marine Pollution Bulletin, 54, 1372–1384.

    Article  CAS  Google Scholar 

  • Zhou, J., You, Y., Bai, Z., Hu, Y., Zhang, J., & Zhang, N. (2011). Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Science of the Total Environment, 409, 452–459.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the TÜBİTAK (The Scientific & Technological Research Council of Turkey) Grant (104Y275) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Pekey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekey, H., Pekey, B., Arslanbaş, D. et al. Source Apportionment of Personal Exposure to Fine Particulate Matter and Volatile Organic Compounds using Positive Matrix Factorization. Water Air Soil Pollut 224, 1403 (2013). https://doi.org/10.1007/s11270-012-1403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1403-2

Keywords

Navigation