Skip to main content

Advertisement

Log in

Treatment of Arsenic-, Chromium-, Copper- and Pentachlorophenol-Polluted Soil Using Flotation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soils polluted by metals and organic compounds are a major challenge in soil remediation and environmental recovery; however, the technology to efficiently decontaminate soils polluted by both metal and organic pollutants does not yet exist. Most of these soils are disposed of in landfills. This study first evaluates chemical reagents (hydrochloric, nitric, sulfuric and lactic acids and ethanol) for leaching metals from soil. Assays were then conducted to evaluate non-ionic, ionic and amphoteric surfactants for pentachlorophenol (PCP) removal by flotation. Finally, a laboratory-scale leaching/flotation process was applied to treat four soil samples polluted with both organic ([PCP]i = 2.5–30 mg kg−1) and metals ([As]i = 50–250 mg kg−1, [Cr]i = 35–220 mg kg−1, [Cu]i = 80–350 mg kg−1) compounds. The organic compounds and metals are concentrated in the froth and liquid fractions, respectively. Removal yields of 82–93 %, 30–80 %, 79–90 % and 36–78 % were obtained from As, Cr, Cu and PCP, respectively, under optimized process conditions (H2SO4 = 1 N, [cocamidopropyl betaine]i = 1 % (w w−1), t = 60 min, T = 60 °C, PD = 10 % (w v−1)). The treatment of the produced leachate was also tested by chemical precipitation using different reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ADEME. (1998). Connaître pour agir. Angers, France: Guides et cahiers techniques.

    Google Scholar 

  • Augustijin-Beckers, P. W. M., Hornsby, A. G., & Wauchope, R. D. (1994). SCS/ARS/CES pesticide properties database for environmental decision making: II. Additional compounds. Reviews of Environmental Contamination and Toxicology, 137, 6–16.

    Google Scholar 

  • Banerji, S. K., Wei, S. M., & Bajpai, R. K. (1993). Pentachlorophenol interactions with soil. Water, Air, and Soil Pollution, 69(1–2), 149–163.

    Article  CAS  Google Scholar 

  • Barnes, H. M. (2008). Wood preservation trends in North America forest products laboratory. Mississippi: Forest and Wildlife Research Center, Mississippi State University.

    Google Scholar 

  • Blais, J. F., Djedidi, Z., Ben Cheikh, R., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents. A review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135–149.

    Article  CAS  Google Scholar 

  • Bouchard, S. (2001). Traitement du minerai. Québec, QC, Canada: Le Griffon d'argile. 373 p.

    Google Scholar 

  • U.S. Congress. (1995). Cleaning up contaminated wood-treating sites, OTA-BP-ENV-164. Washington, DC: Office of Technology Assessment, U.S. Government Printing Office.

    Google Scholar 

  • Czaplicka, M. (2006). Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials, B134, 45–59.

    Article  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    Article  CAS  Google Scholar 

  • Di Corcia, A. (1973). Analysis of phenols by gas/liquid/solid chromatography. Journal of Chromatography, 80, 69–74.

    Article  Google Scholar 

  • DiVincenzo, J. P., & Sparks, D. L. (2001). Sorption of the neutral and charged forms of pentachlorophenol on soil: evidence for different mechanisms. Archives of Environmental Contamination and Toxicology, 40, 445–450.

    Article  CAS  Google Scholar 

  • Elgh-Dalgren, K., Arwidsson, Z., Camdzija, A., Sjöberg, R., Ribé, V., Waara, S., et al. (2009). Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: changes in concentration and toxicity. Journal of Hazardous Materials, 172, 1033–1040.

    Article  CAS  Google Scholar 

  • Gräfe, M., Tappero, R. V., Marcus, M. A., & Sparks, D. L. (2008). Arsenic speciation in multiple metal environments: II. Micro-spectroscopic investigation of a CCA contaminated soil. Journal of Colloid and Interface Science, 321, 1–20.

    Article  Google Scholar 

  • Groenier, J. C., & Lebow, S. (2006). Preservative-treated wood and alternative products in the forest service. Missoula, Manitoba, Canada: USDA Forest Service Technology and Development Program. TE42G01—Technical Services ECAP.

    Google Scholar 

  • Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009a). Optimisation of a chemical leaching process for decontamination of CCA-treated wood. Journal of Hazardous Materials, 169, 136–145.

    Article  CAS  Google Scholar 

  • Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009b). Selective recovery of metals in leachate from chromated copper arsenate treated wood using ion exchange resins and chemical precipitation. Journal of Hazardous Materials, 169, 1099–1105.

    Article  CAS  Google Scholar 

  • Janin, A., Blais, J. F., Drogui, P., Zaviska, F., & Mercier, G. (2009). Selective recovery of metals in leachate from chromated copper arsenate wastes using electrochemical technology and chemical precipitation. Hydrometallurgy, 96, 318–326.

    Article  CAS  Google Scholar 

  • Johnson, T. (2008). Bioremediation and detoxification of polychlorinated dioxin contaminated environments. MMG 445. Basic Biotechnology eJournal, 4, 1–9.

    Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton, FL: CRC Press. 413 p.

    Google Scholar 

  • Khodadoust, A. P., Suidan, M. T., Acheson, C. M., & Brenner, R. C. (1999). Solvent extraction of pentachlorophenol from contaminated soils using water–ethanol mixtures. Chemosphere, 38(11), 2681–2693.

    Article  CAS  Google Scholar 

  • Khodadoust, A. P., Reddy, K. R., & Maturi, K. (2005). Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials, 117(1), 15–24.

    Article  CAS  Google Scholar 

  • Kudaibergenov, S. K. (2002). Polyampholites: Synthesis, characterisation and applications. New-York, NY: Kluwer Academic/Plenum. 220 pp.

    Google Scholar 

  • Kumar, Y., Popat, K. M., Brahmbhatt, H., Ganguly, B., & Bhattacharya, A. (2008). Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes. Journal of Hazardous Materials, 154, 426–431.

    Article  CAS  Google Scholar 

  • Lee, L. S., Suresh, P., Rao, C., Nkedi-Kizza, P., & Delfino, J. J. (1990). Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol–water and soil–water systems. Environmental Science and Technology, 24(5), 654–661.

    Article  CAS  Google Scholar 

  • Lee, M. R., Yeh, Y. C., Hsiang, W. S., & Hwang, B. H. (1998). Solid-phase microextraction and gas chromatography–mass spectrometry for determining chlorophenols from landfill leaches and soil. Journal of Chromatography, 806, 317–324.

    Article  CAS  Google Scholar 

  • Lespagnol, G. (2003). Lixiviation du chrome, du cuivre et de l’arsenic (CCA) à partir de sols contaminés sur des sites de traitement du bois. PhD thesis, École Nationale Supérieure des Mines de Saint-Etienne et de l’Université Jean Monnet, France.

  • Lippmann, M. (2000). Environmental toxicants. Human exposures and their health effects. New York, NY: John Wiley & Sons Inc.. 987 p.

    Google Scholar 

  • Mercier, G., Duchesne, J., & Blackburn, D. (2001). Prediction of metal removal efficiency from contaminated soils by physical methods. Journal of Environmental Engineering, 127(4), 348–358.

    Article  CAS  Google Scholar 

  • Mercier, G., Mouton, J., Blais, J. F., Drogui, P., & Chartier, M. (2008) Procédé, décontaminant et kit chimique pour la décontamination de milieux pollués par des métaux et des composés organiques hydrophobes. Canadian Patent Pending No. CA 2,701,000.

  • Mouton, J., Mercier, G., & Blais, J. F. (2008). New amphoteric surfactants for polluted-soil treatment using flotation. Water, Air, and Soil Pollution, 197(1), 381–393.

    Article  Google Scholar 

  • Mouton, J., Mercier, G., Drogui, P., & Blais, J. F. (2009). Experimental assessment of an innovative process for simultaneous PAHs and Pb removal from polluted soils. Science of the Total Environment, 407, 5402–5410.

    Article  CAS  Google Scholar 

  • Mouton, J., Mercier, G., & Blais, J. F. (2010). Laboratory scale flotation process for treatment of soils contaminated with both PAH and lead. Journal of Environmental Engineering, 136(10), 1063–1074.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Eftekhari, F. (2003). Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology, 70, 269–279.

    Article  Google Scholar 

  • Norton, D., Zheng, J., Danielson, N. D., & Shamsi, S. A. (2005). Capillary electrochromatography-mass spectrometry of zwitterionic surfactants. Analytical Chemistry, 77, 6874–6886.

    Article  CAS  Google Scholar 

  • Olea, A. F., & Gamboa, C. (2003). Solubilisation of phenols in surfactant/polyelectrolyte systems. Journal of Colloid and Interface Science, 268(1), 63–67.

    Article  CAS  Google Scholar 

  • Park, S. K., & Bielefeldt, A. R. (2003). Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil. Water Research, 37, 4663–4672.

    Article  CAS  Google Scholar 

  • Paterson, I. F., Chowdhry, B. Z., & Leharne, S. A. (1999). Polycyclic aromatic hydrocarbon extraction from a coal tar-contaminated soil using aqueous solutions of nonionic surfactants. Chemosphere, 38(13), 3095–3107.

    Article  CAS  Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151–210.

    Article  CAS  Google Scholar 

  • Sahle-Demessie, E., Grosse, D. W., & Bates, E. R. (2000). Solvent extraction and soil washing treatment of contaminated soils from wood preserving sites: Bench-scale studies. Cincinnati, OH: USEPA, Remediation, Summer.

    Google Scholar 

  • Stasiuk, E. N. B., & Schramm, L. L. (1996). The temperature dependance of the critical micelle concentrations of foams-forming surfactants. Journal of Colloid and Interface Science, 178, 324–333.

    Article  CAS  Google Scholar 

  • Subramanian, B. (2007). Exploring neoteric solvent extractants: Applications in the removal of sorbates from solid surfaces and regeneration of automotive catalytic converters. Cincinnati, OH: Division of Research and Advanced Studies of the University of Cincinnati.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tse, K. K. C., & Lo, S. L. (2002). Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Research, 36, 284–290.

    Article  CAS  Google Scholar 

  • Tsuda, T., Takino, A., Kojima, M., Harada, H., & Muraki, K. (1999). Gas chromatographic–mass spectrometric determination of 4-nonylphenols and 4-tert-octylphenol in biological samples. Journal of Chromatography B, 723, 273–279.

    Article  CAS  Google Scholar 

  • USEPA (1992). BioTrol soil washing system for treatment of a wood preserving site, applications analysis report. EPA/540/A5-91/003. Cincinnati, Ohio: Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. 76 p.

  • Walter, I., & Cuevas, G. (1999). Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. Science of the Total Environment, 226, 113–119.

    Article  CAS  Google Scholar 

  • You, C. N., & Lui, J. C. (1996). Desorptive behaviour of chlorophenols in contamined soils. Water Science and Technology, 33(6), 263–270.

    Article  CAS  Google Scholar 

  • Zagury, G. J., Dobran, S., Estrela, S., & Deschênes, L. (2008). Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles. Environmental Toxicology and Chemistry, 27(4), 799–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are extended to the National Sciences and Engineering Research Council of Canada for their financial contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Blais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynier, N., Blais, JF., Mercier, G. et al. Treatment of Arsenic-, Chromium-, Copper- and Pentachlorophenol-Polluted Soil Using Flotation. Water Air Soil Pollut 224, 1514 (2013). https://doi.org/10.1007/s11270-013-1514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1514-4

Keywords

Navigation