Skip to main content
Log in

A Comparison Between a Low-Cost Sorbent and an Activated Carbon for the Adsorption of Heavy Metals from Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, a coal combustion ash (CCA) has been tested as an alternative low-cost sorbent to commercial activated carbons (GAC) for cadmium and zinc removal from polluted water. To this aim, the effect of pH and metal concentration on CCA adsorption capacity has been investigated, and a comparative analysis with GAC has been carried out in the same experimental conditions. Furthermore, in order to improve CCA adsorption capacity, two different activation treatments of raw CCA have been tested. In particular, the CCA was subjected to a gasification process conducted with steam and to different acidic treatments, conducted either with hydrochloric acid or nitric acid at different acid concentrations. Experimental results showed that all the acid treatments determined a substantial reduction of both cadmium and zinc adsorption capacity. Differently, the steam gasification determined a substantial increase in adsorption capacity with respect to raw CCA, in particular for zinc as its adsorption capacity resulted even higher than the correspondent of GAC. Finally, a thorough analysis of sorbent physical and chemical properties and of adsorption data allowed the individuation of the main cadmium/zinc adsorption mechanism both on CCA and activated carbon, adequately described by the Freundlich model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36, 327–363.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbent for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243.

    Article  CAS  Google Scholar 

  • Babić, B. M., Milonjić, S. K., Polovina, M. J., Čupić, S., & Kaludjerović, B. V. (2002). Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 40, 1109–1115.

    Article  Google Scholar 

  • Balsamo, M., Di Natale, F., Erto, A., Lancia, A., Montagnaro, F., & Santoro, L. (2010). Arsenate removal from synthetic wastewater by adsorption onto fly ash. Desalination, 263(1–3), 58–63.

    Article  CAS  Google Scholar 

  • Balsamo, M., Di Natale, F., Erto, A., Lancia, A., Montagnaro, F., & Santoro, L. (2011). Cadmium adsorption by coal combustion ashes-based sorbents—relationship between sorbent properties and adsorption capacity. Journal of Hazardous Materials, 187, 371–378.

    Article  CAS  Google Scholar 

  • Bansode, R. R., Losso, J. N., Marshall, W. E., Rao, R. M., & Portier, R. J. (2003). Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresource Technology, 89, 115–119.

    Article  CAS  Google Scholar 

  • Benjamin, M. (2002). Water chemistry. New York: McGraw Hill.

    Google Scholar 

  • Bhatnagar, A., & Sillanpaa, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157, 277–296.

    Article  CAS  Google Scholar 

  • Cetin, S., & Pehlivan, E. (2007). The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 298, 83–87.

    Article  CAS  Google Scholar 

  • Cho, H., Oh, D., & Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of Hazardous Materials, B127, 187–195.

    Article  Google Scholar 

  • de Pietrobelli, A. J. M. T., Módenes, A. N., Fagundes-Klen, M. R., & Espinoza-Quiñones, F. R. (2009). Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water, Air, and Soil Pollution, 202(1–4), 385–392.

    Article  CAS  Google Scholar 

  • Di Natale, F., Erto, A., Lancia, A., & Musmarra, D. (2008). Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research, 42, 2007–2016.

    Article  Google Scholar 

  • Di Natale, F., Erto, A., Lancia, A., & Musmarra, D. (2009). A descriptive model for metallic ions adsorption from aqueous solutions onto activated carbons. Journal of Hazardous Materials, 169(1–3), 360–369.

    Article  Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sanchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85, 833–846.

    Article  CAS  Google Scholar 

  • Erto, A., Andreozzi, R., Lancia, A., & Musmarra, D. (2010). Factors affecting the adsorption of trichloroethylene onto activated carbons. Applied Surface Science, 256, 5237–5242.

    Article  CAS  Google Scholar 

  • European IPPC Bureau (2003). Reference document on best available techniques in common waste water and waste gas treatment/management systems in the chemical sector—European Commission—on-line version at http://eippcb.jrc.es/

  • Gabaldon, C., Marzal, P., Ferrer, J., & Seco, A. (1996). Single and competitive adsorption of Cd and Zn onto a granular activated carbon. Water Research, 30(12), 3050–3060.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, C. K., Imran, A., Sharmaa, M., & Sainia, V. K. (2003). Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.

    Article  CAS  Google Scholar 

  • Hong, J. K., Ho, Y. J., & Yun, S. T. (2009). Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions. Journal of Hazardous Materials, 164, 235–246.

    Article  CAS  Google Scholar 

  • Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production—a review. Bioresource Technology, 97(9), 1136–1147.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W., & Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 366, 409–426.

    Article  CAS  Google Scholar 

  • Leyva-Ramos, R., Bernal-Jacome, L. A., Guerrero-Coronado, R. M., & Fuentes-Rubio, L. (2001). Competitive adsorption of Cd(II) and Zn(II) from aqueous solution onto activated carbon. Separation Science and Technology, 36(16), 3673–3687.

    Article  CAS  Google Scholar 

  • Marroccoli, M., Pace, M. L., Telesca, A., Valenti, G. L., & Montagnaro, F. (2010). Utilization of coal combustion ashes for the synthesis of ordinary and special cements. Combustion Science and Technology, 182, 588–599.

    Article  Google Scholar 

  • Mehrasbi, M. R., Farahmandkia, Z., Taghibeigloo, B., & Taromi, A. (2009). Adsorption of lead and cadmium from aqueous solution by using almond shells. Water, Air, and Soil Pollution, 199(1–4), 343–351.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169, 351–359.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J. M., & Charlet, L. (2009). Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials, 161, 1347–1354.

    Article  CAS  Google Scholar 

  • Noh, J. S., & Schwarz, J. A. (1990). Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon, 28(5), 675–682.

    Article  CAS  Google Scholar 

  • Papandreou, A., Stournaras, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148, 538–547.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 117, 79–91.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Suzuki, M. (1990). Adsorption engineering. Amsterdam: Elsevier.

    Google Scholar 

  • Wang, S., & Wu, H. (2006). Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials B, 136, 482–501.

    Article  CAS  Google Scholar 

  • Weiner, R. A., & Matthews, R. A. (2003). Environmental engineering (4th ed.). Amsterdam: Butterworth-Heinemann.

    Google Scholar 

  • Weng, C. H., & Huang, C. P. (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids and Surfaces A: Physicochem. Eng. Aspects, 247, 137–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Erto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erto, A., Giraldo, L., Lancia, A. et al. A Comparison Between a Low-Cost Sorbent and an Activated Carbon for the Adsorption of Heavy Metals from Water. Water Air Soil Pollut 224, 1531 (2013). https://doi.org/10.1007/s11270-013-1531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1531-3

Keywords

Navigation