Skip to main content
Log in

TiO2-based Nanomaterials with Photocatalytic Properties for the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, the photochemistry of nano-semiconductor particles has been one of the fastest growing research areas in the physical chemistry field. TiO2 is considered as the most thoroughly investigated semiconductor in the literature, due to its photocatalytic activity, excellent functionality, thermal stability, and non-toxicity. It seems to be the most promising for the photocatalytic destruction of organic pollutants. The challenge for scientific materials is to find a processing method in which the crystalline phase as well as the size and morphology of TiO2 nanocrystals can be controlled. The concept of the present paper consists of a comprehensive study regarding the level of knowledge in the synthesis of TiO2-based nanopowders and their application in the advanced degradation of aromatic nitrocompounds. The objectives are related to: critical analysis of the synthesis techniques of the TiO2-based nanopowders, underlining the importance of using the sol–gel method evaluation of the morphological and structural specific characterization of these techniques; and a comprehensive study of the operational parameters of the pollutant photocatalytic degradation. The relative simple sol–gel method is the most widely used, being considered as a versatile means of developing catalytic materials, as well as an important experimental tool in understanding their physical and chemical properties. In order to enhance TiO2 photocatalysis and to extend the response into the visible domain, titanium has been doped with metals, nonmetals, and ionic components. A recent literature survey concerning some transition metals-doping (Fe, Co, and Ni) of TiO2 nanopowders by the sol–gel method was also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah, M., Gary, K. C. L., & Matthews, R. W. (1990). Effect of common inorganic anions on rates of photocatalytic oxidation of hydrocarbon over illuminated TiO2. Journal of Physical Chemistry, 94, 6620–6825.

    Article  Google Scholar 

  • Aguirre, M. C., Santori, G., Ferretti, O., Fierro, J. L. G., & Reyes, P. (2006). Morphological and structural features of Co/TiO2 catalysts prepared by different methods and their performance in the liquid phase hydrogenation of α, β unsaturated aldehydes. Journal of the Chilean Chemical Society, 51(1), 791–799.

    Article  CAS  Google Scholar 

  • Ahmed, S. (2012). Impact of operating conditions and recent developments in heterogeneous photocatalytic water purification process. Critical Reviews in Environmental Science and Technology, 42, 601–675.

    Article  CAS  Google Scholar 

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollution, 215, 3–29.

    Article  CAS  Google Scholar 

  • Ajmera, A. A., Pangaskov, V. G., & Beenackers, A. A. C. M. (2002). Solar assisted photocatalytic degradation of benzoic acid using titanium dioxide as photocatalysts. Journal of Chemical Engineering and Technology, 25, 173–180.

    Article  CAS  Google Scholar 

  • Akpan, U. G., & Hameed, B. H. (2010). The advancements in sol–gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General, 375, 1–11.

    Article  CAS  Google Scholar 

  • Allen, T. (1997). Particle size measurement. New York: Chapman & Hall.

    Google Scholar 

  • Ambrus, Z., Balasz, N., Alapi, T., Wittmann, G., Sipos, P., Dombi, A., & Mogyorosi, K. (2008). Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Applied Catalysis B: Environment, 81, 23–37.

    Article  CAS  Google Scholar 

  • Arami, H., Mazloumi, M., Khalifehzadeh, R., & Sadrnezhaad, S. K. (2007). Sonochemical preparation of TiO2 nanoparticles. Materials Letters, 61, 4559–4561.

    Article  CAS  Google Scholar 

  • Aruna, S. T., & Mukasyan, A. S. (2008). Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 12, 44–50.

    Article  CAS  Google Scholar 

  • Aruna, S. T., Tirosh, S., & Zaban, A. (2000). Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. Journal of Materials Chemistry, 10, 2388–2391.

    Article  CAS  Google Scholar 

  • Aysin, B., Park, J., & Ozturk, A. (2011). Production of silver loaded photocatalytic TiO2 powders by ball milling. The International Conference on Nanotechnology, NANOCON, 21. – 23. 9. 2011, Brno, Czech Republic, EU.

  • Bae, S. W., Borse, P. H., Hong, S. J., Jang, J. S., Lee, J. S., Jeong, E. D., Hong, T. E., Yoon, J. H., Jin, J. S., & Kim, H. G. (2007). Photophysical properties of nanosized metal-doped TiO2 photocatalyst working under visible light. Journal of the Korean Physical Society, 51, S22–S26.

    Article  CAS  Google Scholar 

  • Bahnemann, W., Muneer, M., & Haque, M. M. (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catalysis Today, 124, 133–148.

    Article  CAS  Google Scholar 

  • Barakat, M. A., Hayes, G., & Shah, S. I. (2005). Effect of co doping on the phase transformation of TiO2 nanoparticles. Journal of Nanoscience and Nanotechnology, X, 1–7.

  • Barakat, M. A., Schaeffer, H., Hayes, G., & Ismat-Shah, S. (2004). Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Applied Catalysis B: Environmental, 57, 23–30.

    Article  CAS  Google Scholar 

  • Behnajady, M. A., & Modirshahla, N. (2006). Kinetic study on photocatalytic degradation of C. I. Acid Yellow 23 by ZnO photocatalyst. Journal Hazardous Materials, 33, 226–232.

    Article  CAS  Google Scholar 

  • Bersani, D., Lottici, P. P., & Montenero, A. (2000). A micro-Raman study of iron–titanium oxides obtained by sol–gel synthesis. Journal of Materials Science, 35, 4301–4305.

    Article  CAS  Google Scholar 

  • Beydoun, D., Amal, R., Low, G., & McEvoy, S. (1999). Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1, 439–458.

    Article  CAS  Google Scholar 

  • Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications — a review. Journal of Chemical Technology and Biotechnology, 77, 102–116.

    Article  CAS  Google Scholar 

  • Bhatkhande, D., Pangarkar, V., & Beenackers, A. (2003). Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Research, 37, 1223–1230.

    Article  CAS  Google Scholar 

  • Bhatkhande, D., Kamble, P., Sawant, S., & Pangarkar, V. (2004). Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chemical Engineering Journal, 102, 283–290.

    Article  CAS  Google Scholar 

  • Bozzola, J. J., & Russell, L. D. (1992). Electron microscopy. Boston: Jones and Bartlett Publishers Inc.

    Google Scholar 

  • Brajsa, A., Szaniawska, K., Barczyński, R. J., Murawski, L., Kościelska, B., Vomvas, A., & Pomoni, K. (2004). The photoconductivity of sol–gel derived TiO2 films. Optical Materials, 26, 151–153.

    Article  CAS  Google Scholar 

  • Brezova, V., Blazkova, A., Borosova, E., Ceppan, M., & Fiala, R. (1995). The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. Journal of Molecular Catalysis A: Chemistry, 98, 109–116.

    Article  CAS  Google Scholar 

  • Brinker, C. J., & Scherrer, G. (1990). Sol–gel science, the physics and chemistry of sol–gel processing. New York: Academic Press.

    Google Scholar 

  • Burns A., Li, W., Baker, C., & Shah, S. I. (2002). Sol–gel synthesis and characterization of neodymium-ion doped nanostructured titania thin films. Materials Research Society Symposium Proceedings, 703, V.5.2.1–V.5.2.6.

  • Byrappa, K., & Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 53, 117–166.

    Article  CAS  Google Scholar 

  • Calza, P., & Pelizzetti, E. (2001). Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure and Applied Chemistry, 73, 1839–1848.

    Article  CAS  Google Scholar 

  • Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177.

    Article  CAS  Google Scholar 

  • Castro-Lόpez, C. A., Centeno, A., & Giraldo, S. A. (2010). Fe-modified TiO2 photocatalyst for the oxidative degradation of recalcitrant water contaminants. Catalysis Today, 157, 119–124.

    Article  CAS  Google Scholar 

  • Cernea, M., Valsangiacom, C., Truşcă, R., & Vasiliu, F. (2007). Synthesis of iron-doped anatase-TiO2 powders by a particulate sol–gel route. Journal of Optoelectronics and Advanced Materials, 9(8), 2648–2652.

    CAS  Google Scholar 

  • Černigoj, U., Štangar, U. L., Trebše, P., & Ribič, R. (2006). Comparison of different characteristics of TiO2 films and their photocatalytic properties. Acta Chimica Slovenica, 53, 29–35.

    Google Scholar 

  • Chan, D., & Ray, A. K. (1998). Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 32, 3223–3234.

    Article  Google Scholar 

  • Chatterjee, D., & Bhattacharya, C. (1999). Photocatalytic destruction of organic pollutants in a Pt/TiO2 semiconductor particulate system. Indian Journal of Chemistry, 38A, 1256–1258.

    CAS  Google Scholar 

  • Chatterjee, D., & Mahata, A. (2001). Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catalysis Communications, 2, 1–3.

    Article  CAS  Google Scholar 

  • Chen, J., Yao, M., & Wang, X. (2008). Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. Journal of Nanoparticle Research, 10, 163–171.

    Article  CAS  Google Scholar 

  • Chen, S., Liu, W., Zhang, S., & Chen, Y. (2010). Preparation and activity evaluation of relative p–n junction photocatalyst Co-TiO2/TiO2. Journal of Sol–gel Science and Technology, 54, 258–267.

    Article  CAS  Google Scholar 

  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107, 2891–2959.

    Article  CAS  Google Scholar 

  • Choi, A. Y., & Han, C.-H. (2012). Comparison of doping limits among sonochemically prepared metal-doped TiO2 nanopowders in view of physicochemical properties. Research on Chemical Intermediates. doi:10.1007/s11164-012-0622-x.

    Google Scholar 

  • Choi, J., & Suh, D. J. (2007). Catalytic applications of aerogels. Catalysis Surveys from Asia, 11, 123–133.

    Article  CAS  Google Scholar 

  • Choi, J., Park, H., & Hoffmann, M. R. (2010a). Effects of single metal-ion doping on the visible-light photo-reactivity of TiO2. Journal of Physical Chemistry C, 114(2), 783–792.

    Article  CAS  Google Scholar 

  • Choi, J., Park, H., & Hoffmann, M. R. (2010b). Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. Journal of Materials Research, 25(1), 149–158.

    Article  CAS  Google Scholar 

  • Choi, W. Y., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 98, 13669–13679.

    Article  Google Scholar 

  • Choi, Y.-J., Seeley, Z., Bandyopadhyay, A., Bose, S., & Akbar, S. A. (2007). Aluminium-doped TiO2 nano-powders for gas sensors. Sensors and Actuators B: Chemical, 124(1), 111–117.

    Article  CAS  Google Scholar 

  • Chong, M. N., Lei, S., Jin, B., Saint, C., & Chaw, C. W. K. (2009). Optimisation of an annular photoreactor process for degradation of Congo red using a newly synthesized titania impregnated Kaolinite nano-photocatalyst. Separation and Purification Technology, 67, 355–363.

    Article  CAS  Google Scholar 

  • Chong, M. N., Jin, B., Chaw, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology. A review. Water Research, 44, 2997–3027.

    Article  CAS  Google Scholar 

  • Comsup, N., Panpranot, J., & Praserthdam, P. (2009). Effect of TiO2 crystallite size on the activity of CO oxidation. Catalysis Letters, 133, 76–83.

    Article  CAS  Google Scholar 

  • Contreras, S., Rodrı́guez, M., Chamarro, E., & Esplugas, S. (2001). UV- and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 142, 79–83.

    Article  CAS  Google Scholar 

  • Corriu, R., & Anh, N. T. (2009). Molecular chemistry of sol–gel derived nanomaterials. John Wiley & Sons, Ltd., Chichester, UK

  • Crewe, A. V., Wall, J., & Langmore, J. (1970). Visibility of single atoms. Science, 168, 1338–1340.

    Article  CAS  Google Scholar 

  • Crişan, D., Drăgan, N., Crişan, M., Răileanu, M., Brăileanu, A., Anastasescu, M., Ianculescu, A., Mardare, D., Luca, D., Marinescu, V., & Moldovan, A. (2008a). Crystallization study of sol–gel un-doped and Pd-doped TiO2 materials. Journal of Physics and Chemistry of Solids, 69, 2548–2554.

    Article  CAS  Google Scholar 

  • Crişan, D., Drăgan, N., Răileanu, M., Crişan, M., Ianculescu, A., Luca, D., Năstuţă, A., & Mardare, D. (2011a). Structural study of sol–gel Au/TiO2 films from nanopowders. Applied Surface Science, 257, 4227–4231.

    Article  CAS  Google Scholar 

  • Crişan, M., Brăileanu, A., Crişan, D., Răileanu, M., Drăgan, N., Mardare, D., Teodorescu, V., Ianculescu, A., Bîrjega, R., & Dumitru, M. (2008b). Thermal behaviour study of some sol–gel TiO2 based materials. Journal of Thermal Analysis and Calorimetry, 92, 7–13.

    Article  Google Scholar 

  • Crişan, M., Brăileanu, A., Răileanu, M., Crişan, D., Teodorescu, V. S., Bîrjega, R., Marinescu, V. E., Madarász, J., & Pokol, G. (2007). TiO2-based nanopowders obtained from different Ti-alkoxides. Journal of Thermal Analysis and Calorimetry, 88, 171–176.

    Article  CAS  Google Scholar 

  • Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V. E., & Hodorogea, S. M. (2008c). Sol–gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids, 354, 705–711.

    Article  CAS  Google Scholar 

  • Crişan, M., Răileanu, M., Ianculescu, A., Crişan, D., & Drăgan, N. (2011b). Sol–gel TiO2-based oxide systems. In R. E. Morris (Ed.), The sol–gel process: uniformity, polymers and applications (pp. 1–135). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • Crittenden, J. C., Zhang, Y., Hand, D. W., Perram, D. I., & Marchand, E. G. (1996). Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysis. Water Environment Research, 68, 270–278.

    Article  CAS  Google Scholar 

  • Dees, P. J., & Polderman, J. (1981). Mercury porosimetry in pharmaceutical technology. Powder Technology, 29, 187–197.

    Article  CAS  Google Scholar 

  • Demazeau, G. (1999). Solvothermal processes: a route to the stabilization of new materials. Journal of Materials Chemistry, 9, 15–18.

    Article  CAS  Google Scholar 

  • Deorsola, F. A., & Valluri, D. (2009). Study of the process parameters in the synthesis of TiO2 nanospheres through reactive microemulsion precipitation. Powder Technology, 190, 304–309.

    Article  CAS  Google Scholar 

  • De Wit, L. A., & Scholten, J. J. F. (1975). Studies on pore structure of adsorbents and catalysts: III. Comparison of pore size distributions determined in chrysotile and zirconia samples by mercury porosimetry and nitrogen capillary condensation. Journal of Catalysis, 36, 36–47.

    Article  Google Scholar 

  • Dhage, S. R., Gaikwad, S. P., & Ravi, V. (2004). Synthesis of nanocrystalline TiO2 by tartrate gel method. Bulletin of Materials Science, 27(6), 487–489.

    Article  CAS  Google Scholar 

  • Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Report, 48, 53–229.

    Article  CAS  Google Scholar 

  • Dieckmann, K. A., Gray, P., & Kamat, P. V. (1992). Photocatalyzed degradation of nitrophenolic compounds on semiconductor surface. Water Science and Technology, 25, 277–279.

    CAS  Google Scholar 

  • Dieckmann, M., & Gray, K. (1996). A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries. Water Research, 30, 1169–1183.

    Article  CAS  Google Scholar 

  • Dillert, R., Brandt, M., Fornefett, I., Siebers, U., & Bahnemann, D. (1995). Photocatalytic degradation of trinitrotoluene and other nitroaromatic compounds. Chemosphere, 12, 2333–2341.

    Article  Google Scholar 

  • Dillert, R., Fornefett, I., Siebers, U., & Bahnemann, D. (1996). Photocatalytic degradation of trinitrotoluene and trinitrobenzene: influence of hydrogen peroxide. Journal of Photochemistry and Photobiology A: Chemistry, 94, 231–236.

    Article  CAS  Google Scholar 

  • Dinnebier, R. E., & Billinge, S. J. L. (2008). Powder diffraction. Theory and practice. Cambridge: Royal Society of Chemistry.

    Book  Google Scholar 

  • Di Paola, A., Garcia-Lopez, E., Ikeda, S., Marci, G., Ohtani, B., & Palmisano, L. (2002a). Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 75, 87–93.

    Article  Google Scholar 

  • Di Paola, A., Marci, G., Palmisano, L., Schiovello, M., Uosaki, K., Ikeda, S., & Ohtani, B. (2002b). Preparation of polycrystalline TiO2 photocatalysis impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. Journal of Physical Chemistry B, 106, 637–645.

    Article  CAS  Google Scholar 

  • Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., & Savinov, E. (2003). Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry, 155, 207–214.

    Article  Google Scholar 

  • Djerdj, I., Arčon, D., Jagličić, Z., & Niederberger, M. (2008). Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. Journal of Solid State Chemistry, 181, 1571–1581.

    Article  CAS  Google Scholar 

  • D'Oliveira, J. C., Minero, C., Pelizzetti, E., & Pichat, P. (1993). Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspension: kinetic effects of the position of the Cl atoms and identification of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 72, 261–267.

    Article  Google Scholar 

  • Duncan, J. F., & Richards, R. G. (1976). Hydrolysis of titanium (IV) sulphate solutions: 2. Solution equilibria, kinetics and mechanism. New Zealand Journal of Science, 19, 179–183.

    CAS  Google Scholar 

  • Ek, R., & Newton, J. M. (1998). Microcrystalline cellulose as a sponge as an alternative concept to the crystallite–gel model for extrusion and spheronization. Pharmaceutical Research, 15, 509–510.

    Article  CAS  Google Scholar 

  • Facchim, G. (2000). Sol–gel synthesis and characterization of TiO2-anatase powers containing nanometric platinum particles employed as catalysts for 4-nitrophenol photodegradation. Journal of Sol–gel Science and Technology, 18, 29–59.

    Article  Google Scholar 

  • Faisal, M., Tariq, M. A., & Muneer, M. (2007). Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes and Pigments, 72, 233–239.

    Article  CAS  Google Scholar 

  • Flegler, S. L., Heckman, J. W., Jr., & Klomparens, K. L. (1993). Scanning and transmission electron microscopy. New York: Freeman.

    Google Scholar 

  • Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357.

    Article  CAS  Google Scholar 

  • Fröschl, T., Hörmann, U., Kubiak, P., Kučerová, G., Pfanzelt, M., Weiss, C. K., Behm, R. J., Hüsing, N., Kaiser, U., Landfester, K., & Wohlfahrt-Mehrens, M. (2012). High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chemical Society Reviews, 41, 5313–5360.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO 2 photocatalysis: fundamental and applications. Tokyo: Bkc. Inc.

    Google Scholar 

  • Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21.

    Article  CAS  Google Scholar 

  • Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63, 515–582.

    Article  CAS  Google Scholar 

  • Ganesh, I., Gupta, A. K., Kumar, P. P., Chandra Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012a). Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Materials Chemistry and Physics, 135, 220–234.

    Article  CAS  Google Scholar 

  • Ganesh, I., Gupta, A. K., Kumar, P. P., Sekhar, P. S. C., Radha, K., Padmanabham, G., & Sundararajan, G. (2012b). Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. The Scientific World Journal, Article ID 127326, 16 pp, doi:10.1100/2012/127326.

  • Ganesh, I., Kumar, P. P., Gupta, A. K., Sekhar, P. S. C., Radha, K., Padmanabham, G., & Sundararajan, G. (2012c). Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics, 6(1), 21–36.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogenous photocatalytic degradation of organic contaminants over titanium dioxide. A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Review, 9, 1–12.

    Article  CAS  Google Scholar 

  • Ge, S.-H., Wang, X.-W., Kou, X.-M., Zhou, X.-Y., Xi, L., Zuo, Y.-L., Yang, X.-L., & Zhao, Y.-X. (2005). Fabrication and magnetic properties of Co-doped TiO2 powders studied by nuclear magnetic resonance. Chinese Physics Letters, 22, 1772–1775.

    Article  CAS  Google Scholar 

  • Gennari, F. C., & Pasquevich, D. M. (1998). Kinetics of anatase rutile transformation in TiO2 in the presence of Fe2O3. Journal of Materials Science, 3, 1571–1578.

    Article  Google Scholar 

  • Ghows, N., & Entezari, M. (2010). Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcinations. Ultrasonics Sonochemistry, 17(5), 878–883.

    Article  CAS  Google Scholar 

  • Giesche, H. (2006). Mercury porosimetry: a general (practical) overview. Particle and Particle Systems Characterization, 23, 1–11.

    Google Scholar 

  • Glaspell, G., & Manivannan, A. (2005). Sol–gel synthesis and magnetic studies of titanium dioxide doped with 10 % M (M = Fe, Mn and Ni). Journal of Cluster Science, 16(4), 501–513.

    Article  CAS  Google Scholar 

  • Glatzmaier, G. C., Nix, R. G., & Mehos, M. S. (1990). Solar destruction of hazardous chemical. Journal Environmental Science Health A, 25, 571–581.

    Google Scholar 

  • Glatzmaier, G., Milne, T. A., Tyner, C., & Jerome, S. (1991). Innovative solar technologies for treatment of concentrated organic wastes. Solar Energy Materials, 24, 672–673.

    Article  CAS  Google Scholar 

  • Gonçalves, G., Lenzi, M. K., Santos, O. A. A., & Jorge, L. M. M. (2006). Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol–gel method. Journal of Non-Crystalline Solids, 352, 3697–3704.

    Article  CAS  Google Scholar 

  • Guinebretière, R. (2007). X-ray diffraction by polycrystalline materials. London: ISTE Ltd.

    Book  Google Scholar 

  • Gupta, S. M., & Tripathi, M. (2012). A review on the synthesis of TiO2 nanoparticles by solution route. Central European Journal of Chemistry, 10(2), 279–294.

    Article  CAS  Google Scholar 

  • Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639–1657.

    Article  CAS  Google Scholar 

  • Ha, M. G., Jeong, E. D., Won, M. S., & Kim, H. G. (2006). Electronic band structure and photocatalytic activity of M-doped TiO2 (M = Co and Fe). Journal of the Korean Physical Society, 49, S675–S679.

    CAS  Google Scholar 

  • Hai, N. N., Khoi, N. T., & Vinh, P. V. (2009). Preparation and magnetic properties of TiO2 doped with V, Mn, Co, La. Journal of Physics: Conferences Series, 187, 012071.

    Article  CAS  Google Scholar 

  • Hamadanian, M., Reisi-Vanani, A., & Majedi, A. (2010). Sol–gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange. Journal of the Iranian Chemical Society, 7, S52–S58.

    Article  CAS  Google Scholar 

  • Han, C.-H., Lee, H.-S., & Han, S.-D. (2008). Synthesis of nanocrystalline TiO2 by sol–gel combustion hybrid method and its application to dye solar cells. Bulletin of Korean Chemical Society, 29(8), 1495–1498.

    Article  CAS  Google Scholar 

  • Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., & Naidu, R. (2009). Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Applied Catalysis A: General, 359, 25–40.

    Article  CAS  Google Scholar 

  • Haque, M., & Muneer, M. (2007). TiO2 - mediated photocatalytic degradation of a textile dye derivate, bromothymol blue, in aqueous suspension. Dyes and Pigments, 75, 443–448.

    Article  CAS  Google Scholar 

  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 44, 8269–8285.

    Article  CAS  Google Scholar 

  • Hatakeyama, T., & Liu, Z. (1998). Handbook of thermal analysis. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • He, H. Y. (2011). Recent study on nano TiO2 photocatalyst: a review in modifications, synthesis technique, and operation parameters. Micro and Nanosystems, 3, 14–25.

    Article  CAS  Google Scholar 

  • Heath, J. P. (2005). Dictionary of microscopy. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Hegde, M. S., Nagaveni, K., & Roy, S. (2005). Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1−x M x O2−δ (M = Cu, Fe, Pt, Pd, V, W, Ce, Zr). Pramana, 65(4), 541–645.

    Article  Google Scholar 

  • Hench, L. L., & West, J. K. (1990). The sol–gel process. Chemical Reviews, 90, 33–72.

    Article  CAS  Google Scholar 

  • Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66, 185–297.

    Article  CAS  Google Scholar 

  • Heredia, J. B., Torregrosa, J., Dominguez, J. R., & Peres, J. A. (2001). Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2 radiation: comparison and modeling of reaction kinetic. Journal of Hazardous Materials B, 83, 255–264.

    Article  Google Scholar 

  • Hermawan, P., Pranowo, H. D., & Kartini, I. (2011). Physical characterization of Ni(II) doped TiO2 nanocrystal by sol–gel process. Indonesian Journal of Chemistry, 11(2), 135–139.

    Google Scholar 

  • Hernández-Perez, I., Maubert, A. M., Rendón, L., Santiago, P., Herrera-Hernández, H., Díaz-Barriga Arceo, L., Garibay Febles, V., Palacios González, E., & González-Reyes, L. (2012). Ultrasonic synthesis: structural, optical and electrical correlation of TiO2 nanoparticles. International Journal of Electrochemistry Science, 7, 8832–8847.

    Google Scholar 

  • Herrmann, J. M. (1999). Catalytic science series (Vol. 1: Environmental catalysis). London: Imperial College Press.

    Google Scholar 

  • Herrmann, J. M. (2005). Heterogeneous photocatalysis: state of the art and present applications. Topics in Catalysis, 34, 49–65.

    Article  CAS  Google Scholar 

  • Ho, L.-N., Ong, S.-A., & See, Y. L. (2012). Photocatalytic degradation of reactive black 5 by fish scale-loaded TiO2 composites. Water Air Soil Pollution. doi:10.1007/s11270-012-1207-4.

    Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Hofstadler, K., Bauer, R., Novalic, S., & Heiser, G. (1994). New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused silica glass fibers: photomineralization of 4-chlorophenol. Environmental Science and technology, 28, 670–674.

    Article  CAS  Google Scholar 

  • ISO 9277:2010 Determination of the specific surface area of solids by gas adsorption — BET method. Second Edition of ISO 9277, ISO, Geneva, 2010.

  • Jamalluddin, N., & Abdulah, A. Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: effect of Fe(III) loading and calcination temperature. Ultrasonics Sonochemistry, 18, 669–678.

    Article  CAS  Google Scholar 

  • Jeong, E. D., Borse, P. H., Jang, J. S., Lee, J. S., Jung, O.-S., Chang, H., Jin, J. S., Won, M. S., & Kim, H. G. (2008). Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst. Journal of Ceramic Processing Research, 9(3), 250–253.

    Google Scholar 

  • Jing, J., Liu, M., Calvin, V., Li, W., & Yu, W. (2011). Photocatalytic degradation of nitrogen-containing organic compounds over TiO2. Journal of Molecular Catalysis, A: Chemical, 351, 17–28.

    Article  CAS  Google Scholar 

  • Johnston, G. P., Smith, D. M., Melendez, I., & Hurd, A. J. (1990). Compression effects in mercury porosimetry. Powder Technology, 61, 289–294.

    Article  CAS  Google Scholar 

  • Jolivet, J. P., Henry, M., & Livage, J. (2000). Metal oxide chemistry and synthesis—from solution to solid state. England: John Wiley & Sons Ltd.

    Google Scholar 

  • Kamble, S. P., Sawant, S. B., & Pangarkar, V. G. (2004). Novel solar based photocatalytic reactor for degradation of refractory pollutants. American Institute of Chemical Engineers, 50, 1648–1651.

    Article  CAS  Google Scholar 

  • Kaneko, M., & Okura, I. (2003). Photocatalysis — science and technology. ISBN 3-540-43473-9. Berlin: Springer.

    Google Scholar 

  • Karimipour, M., Wikberg, J. M., Shahtahmasebi, N., Abad, M. R. R., Bagheri-Mohagheghi, M. M., & Svedlindh, P. (2011). Effect of annealing temperature on the structural and magnetic properties of Co-doped TiO2 nanoparticles via complex-polymer sol–gel method. Journal of Nanoscience and Nanotechnology, 11, 1–5.

    Article  CAS  Google Scholar 

  • Katsani, A., Gomes, H., Pastrana-Martinez, L., Faria, J., Figueiredo, J., Mantzavinos, D., & Silva, A. (2011). Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chemical Engineering Journal, 172, 634–640.

    Article  CAS  Google Scholar 

  • Khataee, A., & Mansoori, G. A. (2012). Nanostructured titanium dioxide materials. Properties, preparation and applications. 204 pp. ISBN: 978-981-4374-72-9. New Jersey: World Scientific Publishing.

    Google Scholar 

  • Kiriakidou, F., Kondarides, D. I., & Verykios, X. E. (1999). The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catalysis Today, 54, 119–130.

    Article  CAS  Google Scholar 

  • Kokila, P., Senthilkumar, V., & Nazeer, K. P. (2011). Preparation and photo catalytic activity of Fe3+-doped TiO2 nanoparticles. Scholar Research Library, Archives of Physics Research, 2(1), 246–253.

    CAS  Google Scholar 

  • Kolen’ko, Y. V., Burukhin, A. A., Churagulov, B. R., & Oleynikov, N. N. (2003). Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Materials Letters, 57, 1124–1129.

    Article  Google Scholar 

  • Konstantinou, I., & Albanis, T. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis, 49, 1–14.

    Article  CAS  Google Scholar 

  • Kumar, K. N. P., Keizer, K., & Burggraaf, J. A. (1993). Textural evolution and phase transformation in titania membranes: Part 1. Unsupported mambranes. Journal of Materials Chemistry, 3, 1141–1149.

    Article  CAS  Google Scholar 

  • Kumar, S., & Davis, A. P. (1997). Heterogeneous photocatalytic oxidation of nitrotoluenes. Water Environmental Research, 69, 1238–1245.

    Article  CAS  Google Scholar 

  • Lam, S. M., Sin, J. C., & Mohamed, A. R. (2008). Recent patents on photocatalysis over nanosized titanium dioxide. Recent Patents on Chemical Engineering, 1, 209–219.

    Article  CAS  Google Scholar 

  • Laokiat, L., Khemthong, P., Grisdanurak, N., Sreearunothai, P., Pattanasiriwisawa, W., & Klysubun, W. (2012). Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth. Korean Journal of Chemical Engineering, 29, 377–383.

    Article  CAS  Google Scholar 

  • Lee, J., & Gouma, P. I. (2012). Sol–gel processed oxide photocatalysts. In M. Aparicio, A. Jitianu, & L. C. Klein (Eds.), Sol–gel processing for conventional and alternative energy (pp. 217–237). New York: Springer Science + Business Media.

    Google Scholar 

  • Lee, W., Shen, H. S., Dwight, K., & Wold, A. (1993). Effect of silver on the photocatalytic activity of TiO2. Journal of Solid State Chemistry, 106, 288–294.

    Article  CAS  Google Scholar 

  • Lei, Y., Shen, Z., Chen, X., Jia, J., & Wang, W. (2006). Preparation and application of nano-TiO2 catalyst in dye electrochemical treatment. Water South African Journals, 32, 205–209.

    CAS  Google Scholar 

  • Leon y Leon, C. A. (1998). New perspectives in mercury porosimetry. Advances in Colloid and Interface Science, 76–77, 341–372.

    Article  Google Scholar 

  • Lezner, M., Grabowska, E., & Zaleska, A. (2012). Preparation and photocatalytic activity of iron-modified titanium dioxide photocatalyst. Physicochemical Problems of Mineral Processing, 48(1), 193–200.

    CAS  Google Scholar 

  • Lim, S. H., Ferraris, C., Schreyer, M., Shih, K., Leckie, J. O., & White, T. J. (2007). The influence of cobalt doping on photocatalytic nano-titania: crystal chemistry and amorphicity. Journal of Solid State Chemistry, 180, 2905–2915.

    Article  CAS  Google Scholar 

  • Lin, H., de Oliveira, P. W., Grobelsek, I., Haettich, A., & Veith, M. (2010). The synthesis of anatase TiO2 nanoparticles by solvothermal method using ionic liquid as additive. Zeitschrift für Anorganische und Allgemeine Chemie, 636, 1947–1954.

    Article  CAS  Google Scholar 

  • Linsebigler, A. L., Lu, G., & Yates, J. T., Jr. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758.

    Article  CAS  Google Scholar 

  • Litter, M. I. (1999). Heterogeneous photocatalysis. Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23, 89–114.

    Article  CAS  Google Scholar 

  • Litter, M. I. (2005). Introduction to photochemical advanced oxidation processes for water treatment. In P. Boule, D. Bahnemann, & P. J. K. Robertson (Eds.), Environmental chemistry: Part II (The Hanbook of Environmental Chemistry), vol. 2M (pp. 325–366). Berlin: Springer.

    Google Scholar 

  • Liu, J., An, T., Li, G., Bao, N., Sheng, G., & Fu, J. (2009). Preparation and characterization of highly active mesoporous TiO2 photocatalysts by hydrothermal synthesis under weak acid conditions. Microporous and Mesoporous Materials, 124, 197–203.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, Y., Wang, H., & Wu, Z. (2011). Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol–gel method. Catalysis Communications, 12, 1291–1294.

    Article  CAS  Google Scholar 

  • Livage, J., & Ganguli, D. (2001). Sol–gel electrochromic coatings and devices: a review. Solar Energy Materials & Solar Cells, 68, 365–381.

    Article  CAS  Google Scholar 

  • Livage, J., Henry, M., & Sanchez, C. (1988). Sol–gel chemistry of transition metal oxides. Progress in Solid State Chemistry, 18, 259–341.

    Article  CAS  Google Scholar 

  • Lopes, P. R. M., Montagnolli, R. N., & Bidoia, E. D. (2012). Photocatalytic degradation of phenol by thermal titanium dioxide thin layer Electrodes. Water Air Soil Pollution. doi:10.1007/s11270-012-1140-6.

    Google Scholar 

  • Lopez, R., & Gomez, R. (2011). Photocatalytic degradation of 4-nitrophenol on well characterized sol–gel molybdenum doped titania semiconductors. Topics in Catalysis, 54, 504–511.

    Article  CAS  Google Scholar 

  • Lu, G. Q., & Zhao, X. S. (2004). Nanoporous materials: science and engineering. Series on chemical engineering, Vol. 4. London, UK: Imperial College Press. 897 pp.

    Google Scholar 

  • Lu, H.-B., Zhou, Y.-Z., Vongehr, S., Tang, S.-C., & Meng, X.-K. (2012a). Effect of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Science China Technological Sciences, 55(4), 894–902. doi:10.1007/s11431-011-4706-4.

    Article  CAS  Google Scholar 

  • Lu, J., Jin, H., Dai, Y., Yang, K., & Huang, B. (2012b). Effect of electronegativity and charge balance on the visible-light-responsive photocatalytic activity on nonmetal doped anatase TiO2. International Journal of Photoenergy, Volume 2012, Article ID 928503, 8 pp, doi:10.1155/2012/928503.

  • Lu, M., Cui, H., Li, Y., Zhu, S., Liu, W., & Luo, Z. (2008). A spectrum study of Fe-doped TiO2 nano-particles prepared by sol–gel method. http://www.paper.edu.cn, A 200808–388.pdf.

  • Luu, C. L., Nguyen, Q. T., & Ho, S. T. (2010). Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Advances in Natural Sciences and Nanotechnology, 1, 015008. 5 pp.

    Article  CAS  Google Scholar 

  • Lόpez, T., Moreno, J. A., Gόmez, R., Bokhimi, X., Wang, J. A., Yee-Madeira, H., Pecchi, G., & Reyes, P. (2001). Characterization of iron-doped titania sol–gel materials. Journal of Materials Chemistry, 12, 1–6.

    Google Scholar 

  • Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type synthesis and its applications. Journal of Materials Science, 46, 3669–3686.

    Article  CAS  Google Scholar 

  • Maensiri, S., Laokul, P., & Klinkaewnarong, J. (2006). A simple synthesis and room-temperature magnetic behavior of Co-doped anatase TiO2 nanoparticles. Journal of Magnetism and Magnetic Materials, 302, 448–453.

    Article  CAS  Google Scholar 

  • Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147, 1–59.

    Article  CAS  Google Scholar 

  • Marugan, J., Grieken, R. V., Cassano, A. E., & Alfano, O. M. (2008). Intrinsec kinetic modeling with explicit radiation absorption effect of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Applied Catalysis. B. Environmental, 85, 48–60.

    Article  CAS  Google Scholar 

  • Marugán, J., Christensen, P., Egerton, T., & Purnama, H. (2009). Synthesis, characterization and activity of photocatalytic sol–gel TiO2 powders and electrodes. Applied Catalysis B:Environmental, 89, 273–283.

    Article  CAS  Google Scholar 

  • Maurino, V., Minero, C., Pelizzetti, E., Piccinini, P., Serpone, M., & Hidaka, H. (1997). The fate of organic nitrogen under photocatalytic conditions: degradation of nitrophenols and aminophenols on irradiated TiO2. Journal of Photochemistry and Photobiology, A: Chemistry, 109, 171–176.

    Article  CAS  Google Scholar 

  • Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35.

    Article  CAS  Google Scholar 

  • Mills, A., Davies, R. H., & Worsley, D. (1993). Water purification by semiconductor photocatalysis. Chemical Society Reviews, 22, 417–425.

    Article  CAS  Google Scholar 

  • Minero, C., Catozzo, F., & Pelizzetti, E. (1992). Role of adsorption in photocatalyzed reactions of organic molecules in aqueous TiO2 suspensions. Langmuir, 8, 481–486.

    Article  CAS  Google Scholar 

  • Minero, C., Pelizzetti, E., Piccinini, P., & Vincenti, M. (1994). Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO. Chemosphere, 28, 1229–1244.

    Article  CAS  Google Scholar 

  • Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N., & Madras, G. (2004). Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir, 20, 2900–2907.

    Article  CAS  Google Scholar 

  • Nahem, M., Bahnemann, D., Dillert, R., & Fels, G. (1997). Photocatalytic degradation of trinitrotoluene: reductive and oxidative pathways. Journal of Photochemistry and Photobiology, 110, 191–199.

    Article  Google Scholar 

  • Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. United States of America: Wiley-Interscience Publication.

    Google Scholar 

  • Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169–189.

    Article  CAS  Google Scholar 

  • Navío, J. A., Colόn, G., Macías, M., Real, C., & Litter, M. I. (1999). Iron-doped titania semiconductor powders prepared by a sol–gel method: Part I. Synthesis and characterization. Applied Catalysis A: General, 177, 11–120.

    Article  Google Scholar 

  • Navio, J. A., Testa, J. J., Djejdeian, P., Padron, J. R., Rodriguez, D., & Litter, M. I. (1999). Iron-doped titania powders prepared by a sol–gel method: Part II. Photocatalytic properties. Applied Catalysis A: General, 178, 191–203.

    Article  CAS  Google Scholar 

  • Nguyen, V. N., Nguyen, N. K. T., & Nguyen, P. H. (2011). Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Advances in Natural Sciences, Nanoscience and Nanotechnology, 2, 035014. doi:10.1088/20436262/2/3/035014. 4 pp.

    Article  CAS  Google Scholar 

  • Nie, X., Zhuo, S., Maeng, G., & Sohlberg, K. (2009). Doping of TiO2 polymorphs for altered optical and photocatalytic properties. International Journal of Photoenergy, 2009(294042), 22. doi:10.1155/2009/294042.

    Google Scholar 

  • Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., & Itaya, A. (1985). Heterogeneous photocatalysis decomposition of phenol over anatase powder. Bulletin of Chemical Society of Japan, 58, 2015–2022.

    Article  CAS  Google Scholar 

  • Ollis, D. F., Pellizetti, E., & Serpone, N. (1989). Heterogeneous photocatalysis in the environment: application to water purification. In N. Serpone & E. Pelizzeti (Eds.), Photocatalysis fundamentals and applications (pp. 603–638). New York: Wiley-Interscience Publication, John Wiley & Sons.

    Google Scholar 

  • Ovenstone, J. (2001). Preparation of novel titania photocatalysts with high activity. Journal of Materials Science, 36, 1325–1329.

    Article  CAS  Google Scholar 

  • Ovenstone, J., & Yanagisawa, K. (1999). Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chemistry of Materials, 11, 2770–2774.

    Article  CAS  Google Scholar 

  • Ovenstone, J., & Yanagisawa, K. (2001). Hydrothermal crystallization of anatase and characterization of photocatalytic properties. High Pressure Research, 20, 79–85.

    Article  Google Scholar 

  • Pacheco, F., González, M., Medina, A., Velumani, S., & Ascencio, J. A. (2004). Structural analysis of cobalt titanate nanoparticles obtained by sol–gel process. Applied Physics A, 78, 531–536.

    Article  CAS  Google Scholar 

  • Palmer, H. K., & Rowe, R. C. (1974). The application of mercury porosimetry to porous polymer powders. Powder Technology, 9, 181–186.

    Article  CAS  Google Scholar 

  • Pareek, V., Chong, S., Tade, M., & Adesina, A. A. (2008). Light intensity distribution in heterogeneous photocatalytic reactors. Asia-Pac. Journal of Chemical Engineering, 3, 171–201.

    Article  CAS  Google Scholar 

  • Parraa, S., Oliverbo, J., Pachecob, I., & Pulgarina, C. (2003). Structural properties and photoreactivity relationship of substituted phenols in TiO2 suspension. Applied Catalysis Today, 43, 293–301.

    Google Scholar 

  • Patil, K. C., Aruna, S. T., & Mimani, T. (2002). Combustion synthesis: an update. Current Opinion in Solid State and Materials Science, 6, 507–512.

    Article  CAS  Google Scholar 

  • Pecchi, G., Reyes, P., Lόpez, T., Gόmez, R., Moreno, A., & Fierro, J. L. G. (2002). Effect of precursors on surface and catalytic properties of Fe/TiO2 catalysts. Journal of Chemical Technology and Biotechnology, 77, 944–949.

    Article  CAS  Google Scholar 

  • Pecharsky, V. K., & Zavalij, P. Y. (2005). Fundamentals of powder diffraction and structural characterization of materials. New York: Springer.

    Google Scholar 

  • Pechini, M. P. (1967). Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent 3.330.697, 7 pp.

  • Pelaez, M., Nolan, N., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dulop, P. S. M., Hamilton, J. W. J., Birne, J. A., O’Shea, K., Entezari, M. H., & Dionysion, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.

    Article  CAS  Google Scholar 

  • Pelizzetti, E., Piccinini, P., & Vincenti, M. (1993). Phototransformations of nitrogen containing organic compounds over irradiated semiconductor metal oxides. Nitrobenzene and atrazine over TiO2 and ZnO. Coordination Chemistry Reviews, 125, 183–194.

    Article  CAS  Google Scholar 

  • Pennycook, S. J., Lupini, A. R., Varela, M., Borisevich, A. Y., Peng, Y., Oxley, M. P., & Chisholm, M. F. (2006). Scanning transmission electron microscopy for nanostructure characterization. In W. Zhou & Z. L. Wang (Eds.), Scanning microscopy for nanotechnology: Techniques and applications (pp. 152–191). New York: Springer.

    Chapter  Google Scholar 

  • Phan, T.-D. N., Pham, H.-D., Cuong, T. V., Kim, E. J., Kim, S., & Shin, E. W. (2009). A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid. Journal of Crystal Growth, 312, 79–85.

    Article  CAS  Google Scholar 

  • Phanichphant, S., Liewhiran, C., Wetchakun, K., Wisitsoraat, A., & Tuantranont, A. (2011). Flame –made Nb doped TiO2 ethanol and acetone sensors. Sensors, 11, 472–484.

    Article  CAS  Google Scholar 

  • Philippopoulos, C. J., & Nikolaki, M. D. (2010). Photocatalytic processes on the oxidation of organic compounds in water. In B. Šramová (Ed.), New trends in technologies (pp. 89–107). Croatia: In-Teh.

    Google Scholar 

  • Piccinini, P., Minero, C., Vincenti, M., & Pelizzetti, E. (1997). Photocatalytic mineralization of nitrogen-containing benzene derivatives. Catalysis Today, 39, 187–195.

    Article  CAS  Google Scholar 

  • Piera, E., Tejedor-Tejedor, M. I., Zorn, M. E., & Anderson, M. A. (2003). Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst. Applied Catalysis B:Environmental, 46, 671–685.

    Article  CAS  Google Scholar 

  • Pierre, A. C. (1992). Introduction aux procedes sol–gel. Paris: Editions SEPTIMA.

    Google Scholar 

  • Pongwan, P., Inceesungvorn, B., Wetchakun, K., Phanichphant, S., & Wetchakun, N. (2012). Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Engineering Journal, 16(3), 143–151.

    Article  Google Scholar 

  • Pulišová, P., Boháček, J., Šubrt, J., Szatmáry, L., Bezdička, P., Večerníková, E., & Balek, V. (2010). Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. Journal of Thermal Analysis and Calorimetry, 101, 607–613.

    Article  CAS  Google Scholar 

  • Qi, Y. H., Wang, Z. H., Zhuang, Y. Y., Yu, Y., & Li, J. I. (2005). Study on the photocatalytic performance and degradation of X-38 over modified titanium dioxide. Journal of Hazardous Materials, 118, 219–225.

    Article  CAS  Google Scholar 

  • Quamar, M., Saquib, M., & Muneer, M. (2005a). Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions. Desalination, 186, 255–271.

    Article  CAS  Google Scholar 

  • Quamar, M., Saquib, M., & Muneer, M. (2005b). Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido Black 10B, in aqueous suspensions of titanium dioxide. Dyes and Pigments, 6, 1–9.

    Article  CAS  Google Scholar 

  • Rahimi, R., Fard, E. H., Saadati, S., & Rabbani, M. (2012). Degradation of methylene blue via Co-TiO2 nano powders modified by meso-tetra(carboxyphenyl)porphyrin. Journal of Solgel. Science and Technology, 62, 351–357.

    CAS  Google Scholar 

  • Rajesh, J., Tayade, R., Bajaj, H. C., & Jasra, R. V. (2011). Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts. Desalination, 275, 160–165.

    Article  CAS  Google Scholar 

  • Ranjit, K. T., & Viswanathan, B. (1997). Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. Journal of Photochemistry and Photobielogy A: Chemistry, 108, 79–84.

    Article  CAS  Google Scholar 

  • Ranjit, K. T., Varadarajan, T. K., & Viswanathan, B. (1996). Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. Journal of Photochemistry and Photobiology A - Chemistry, 96A, 181–185.

    Article  Google Scholar 

  • Rasouli, S., Oshani, F., & Hashemi, S. M. (2012). The effect of fuel-to-oxidizer ratio on the structure and photo-catalytic activity of TiO2 nanosheets prepared by a microwave-assisted combustion method. Journal of Ceramic Processing Research, 13(2), 133–137.

    Google Scholar 

  • Răileanu, M., Crişan, M., Drăgan, N., Crişan, D., Galtayres, A., Brăileanu, A., Ianculescu, A., Teodorescu, V. S., Niţoi, I., & Anastasescu, M. (2009). Sol–gel doped TiO2 nanomaterials: a comparative study. Journal Sol–gel, Science and Technology, 51, 315–329.

    Article  CAS  Google Scholar 

  • Rincon, A. G., & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 – implication in solar water disinfection. Applied Catalysis, B: Environmental, 51, 283–302.

    Article  CAS  Google Scholar 

  • Ritter, H. L., & Drake, L. C. (1945). Pore-size distribution in porous materials. Pressure porosimeter and determination of complete macropore-size distributions. Industrial and Engineering Chemistry, 17, 782–786.

    CAS  Google Scholar 

  • Rodriguez, M., Timokhin, V., Michl, F., Contreras, S., Gimenez, J., & Esplugas, S. (2002). The influence of different irradiation sources on the treatment of nitrobenzene. Catalysis Today, 76, 291–300.

    Article  CAS  Google Scholar 

  • Rodríguez-González, V., Ruiz-Gόmez, M. A., Torres-Martínez, L. M., & Gόmez, R. (2011). Photocatalytic decomposition of synthetic alizarin red S by nickel doped TiO2. Topics in Catalysis, 54, 490–495.

    Article  CAS  Google Scholar 

  • Rootare, H. M., & Prenzlow, C. F. (1967). Surface areas from mercury porosimeter measurements. Journal of Physical Chemistry, 71, 2733–2736.

    Article  CAS  Google Scholar 

  • Samuel, V., Pasricha, R., & Ravi, V. (2005). Synthesis of nanocrystalline rutile. Ceramics International, 31, 555–557.

    Article  CAS  Google Scholar 

  • San, N., Hatipoglu, A., Kosturk, G., & Cinar, Z. (2002). Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 146, 189–197.

    Article  CAS  Google Scholar 

  • Santacesaria, E., Tonello, M., Storti, G., Pace, R. C., & Carra, S. (1986). Kinetics of titanium dioxide precipitation by thermal hydrolysis. Journal of Colloid and Interface Science, 111, 44–53.

    Article  CAS  Google Scholar 

  • Saquib, M., & Muneer, M. (2002). Semiconductor mediated photocatalysed degradation of an antraquinone dye. Ramazol Brilliant Blue R under sunlight and artificial light source, Dyes and Pigments, 53, 237–249.

    CAS  Google Scholar 

  • Saquib, M., Tariq, M. A., Faisal, M., & Muneer, M. (2008a). Photocatalytic degradation of two selected dye derivates in aqueous solution of titanium dioxide. Desalination, 219, 301–311.

    Article  CAS  Google Scholar 

  • Saquib, M., Tariq, M. A., Faisal, M., & Muneer, M. (2008b). photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. Journal of Environmental Management, 8, 300–306.

    Article  CAS  Google Scholar 

  • Schmelling, D., & Gray, K. (1995). Photocatalytic transformation and mineralization of 2,4,6-trinitrotoluene (TNT) in TiO2 slurries. Water Research, 29, 2651–2662.

    Article  CAS  Google Scholar 

  • Sclafani, A., Palmisano, L., & Schiavello, M. (1990). Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. Journal of Physical Chemistry, 94, 829–832.

    Article  CAS  Google Scholar 

  • Sclafani, A., Palmisano, L., & David, E. (1991). Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersion: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology, A: Chemistry, 56, 113–123.

    Article  CAS  Google Scholar 

  • Seabra, M. P., Miranda Salvado, I. M., & Labrincha, J. A. (2011). Pure and (zinc or iron) doped titania powders prepared by sol–gel and used as photocatalyst. Ceramics International, 37, 3317–3322.

    Article  CAS  Google Scholar 

  • Sedneva, T. A., Lokshin, E. P., & Belikov, M. L. (2012). Ferroin adsorption on TiO2-based photocatalytic materials. Inorganic Materials, 48(5), 480–487.

    Article  CAS  Google Scholar 

  • Serpone, N., Lawless, D., Disdier, J., & Herrmann, J. M. (1994). Spectroscopic, photoconductivity and photocatalytic studies of TiO2 colloid-naked and with the lattice doped with Cr3+, Fe3+ and V5+ cations. Langmuir, 10, 643–652.

    Article  CAS  Google Scholar 

  • Shah, S. I., Li, W., Huang, C. P., Jung, O., & Ni, C. (2002). Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proceedings of the National Academy of Sciences (PNAS), 99, 6482–6486.

    Article  CAS  Google Scholar 

  • Shen, X.-Z., Liu, Z.-C., Xie, S.-M., & Guo, J. (2009). Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. Journal of Hazardous Materials, 162, 1193–1198.

    Article  CAS  Google Scholar 

  • Šijaković-Vujičić, N., Gotić, M., Musić, S., Ivanda, M., & Popović, S. (2004). Synthesis and microstructural properties of Fe-TiO2 nanocrystalline particles obtained by a modified sol–gel method. Journal of Sol–Gel Science and Technology, 30, 5–19.

    Article  Google Scholar 

  • Sing, K. S., Everett, W. D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physical adsorption data for gas/solid systems with special reference to the determination of surface area and porosity. (IUPAC Recommendations 1984). Pure and Applied Chemistry, 57, 603–619.

    Article  CAS  Google Scholar 

  • Sivlim, T., Akkan, Ş., Altın, İ., Koç, M., & Sökmen, M. (2012). TiO2 immobilized biodegradable polymer for photocatalytic removal of chlorophenol. Water Air Soil Pollution. doi:10.1007/s11270-012-1163-z.

    Google Scholar 

  • Skandan, G., Chen, Y.-J., Glumac, N., & Kear, B. H. (1999). Synthesis of oxide nanoparticles in low pressure flames. Nanostructured Materials, 11(2), 149–158.

    Article  CAS  Google Scholar 

  • Sobczyński, A., & Dobosz, A. (2001). Water purification by photocatalysis on semiconductors. Polish Journal of Environmental Studies, 10, 195–205.

    Google Scholar 

  • Sökmen, M., Tatlıdil, I., Breen, C., Clegg, F., Buruk, C. K., Sivlim, T., & Akkan, S. (2011). A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties. Journal of Hazardous Materials, 187, 199–205.

    Article  CAS  Google Scholar 

  • Somiya, S., & Roy, R. (2000). Hydrothermal synthesis of fine oxide powders. Bulletin of Materials Science, 23(6), 453–460.

    Article  CAS  Google Scholar 

  • Stasinakis An, S. (2008). Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global Network for Environmental Science and Technology (Global NEST) Journal, 10, 376.

    Google Scholar 

  • Subramaniam, V., Pangarkar, V. G., & Beenackers, A. A. C. M. (2000). Photocatalytic degradation of p-hydroxibenzoic acid: relationship between substrate adsorption and photocatalytic degradation. Clean Products and Process, 2, 149–156.

    Article  Google Scholar 

  • Šubrt, J., Criado, J. M., Szatmáry, L., Diánez-Millán, M. J., Murafa, N., Pérez-Maqueda, L. A., & Brezová, V. (2011). Mechanochemical synthesis of visible light sensitive titanium dioxide photocatalyst. International Journal of Photoenergy, Article ID 156941, 9 pp, doi:10.1155/2011/156941

  • Suchanek, W. L., & Riman, R. E. (2006). Hydrothermal synthesis of advanced ceramic powders. Advances in Science and Technology, 45, 184–193.

    Article  CAS  Google Scholar 

  • Sun, S., Bao, J., Gao, C., & Ding, J. (2011). Photocatalytic degradation of gaseous o-xylene over M-TiO2 (M = Ag, Fe, Cu, Co) in different humidity levels under visible-light irradiation: Activity and kinetic study. Rare Metals, 30, 147–152.

    Article  CAS  Google Scholar 

  • Suriye, K., Praserthdam, P., & Jongsomjit, B. (2005). Impact of Ti3+ present in titania on characteristics and catalytic properties of the Co/TiO2 catalyst. Industrial and Engineering Chemistry Research, 44, 6599–6604.

    Article  CAS  Google Scholar 

  • Takeuchi, M., Matsuoka, M., & Anpo, M. (2012). Ion engineering techniques for the preparation of the highly effective TiO2 photocatalysts operating under visible light irradiation. Research on Chemical Intermediates, 38, 1261–1277.

    Article  CAS  Google Scholar 

  • Tan, Y. N., Wong, C. L., & Mohamed, A. R. (2011). An overview on the photocatalytic activity of nano-doped-TiO2 in the degradation of organic pollutants. International Scholarly Research Network (ISRN) Materials Science, 2011(261219), 18–5402/2011/261219.

  • Tanaka, K., Luesaiwong, W., & Hisanaga, T. (1997). Photocatalytic degradation of mono-d- and trinitrophenol in aqueous TiO2 suspension. Journal of Molecular Catalysis A: Chemical, 122, 67–74.

    Article  CAS  Google Scholar 

  • Tang, Y-C., Huang, X-H., Yu, H-Q., & Tang, L-H. (2012). Nitrogen-doped TiO2 photocatalyst prepared by mechanochemical method: doping mechanisms and visible photoactivity of pollutant degradation, International Journal of Photoenergy, Article ID 960726, 10 pp, doi:10.1155/2012/960726.

  • Teleki, A., Pratsinis, S. E., Kalayanasundaram, K., & Gouma, P. I. (2006). Sensing of organic vapors by flame-made TiO2 nanoparticles. Sensors and Actuators B; Chemical, 119(2), 683–690.

    Article  CAS  Google Scholar 

  • Teoh, W. Y., Amal, R., Mädler, L., & Pratsinis, S. E. (2007). Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catalysis Today, 120(2), 203–213.

    Article  CAS  Google Scholar 

  • Tonejc, A. M., Djerdj, I., & Tonejc, A. (2001). Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders. Materials Science and Engineering, B85, 55–63.

    CAS  Google Scholar 

  • Trapalis, C. C., Keivanidis, P., Kordas, G., Zaharescu, M., Crişan, M., Szatvanyi, A., & Gartner, M. (2003). TiO2 (Fe3+) nanostructured thin film with antibacterial properties. Thin Solid Films, 433, 186–190.

    Article  CAS  Google Scholar 

  • Tryba, B. (2008). Review Article. Increase of the photocatalytic activity of TiO2 by carbon and iron modifications. International Journal of Photoenergy, Volume 2008, Article ID 721824, 15 pp, doi:10.1155/2008/721824

  • Tseng, T. K., Lin, Y. S., Chen, Y. J., & Chu, H. (2010). A review of photocatalysts prepared by sol–gel method for VOCs removal. International Journal of Molecular Sciences, 11, 2336–2361.

    Article  CAS  Google Scholar 

  • T-Thienprasert, J., Klaithong, S., Niltharach, A., Worayingyong, A., Na-Phattalung, S., & Limpijumnong, S. (2011). Local structures of cobalt in Co-doped TiO2 by synchrotron x-ray absorption near edge structures. Current Applied Physics, 11(3), S279–S284.

    Article  Google Scholar 

  • Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic contaminants: mechanisms, involving hydroxyl radical attack. Journal of Catalysis, 122, 178–192.

    Article  CAS  Google Scholar 

  • Venkatachalam, N., Palanichamy, M., & Murugesan, V. (2007). Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis, A: Chemical, 273, 177–185.

    Article  CAS  Google Scholar 

  • Vohra, M. S., & Tanaka, K. (2002). Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension. Water Research, 36, 59–64.

    Article  Google Scholar 

  • Wang, C., Li, Q., & Wang, R. (2004). Synthesis and characterization of mesoporous iron-doped TiO2. Journal of Materials Science, 39, 1899–1901.

    Article  CAS  Google Scholar 

  • Wang, H., Tang, Z., Sun, L., He, Y., Wu, Y., & Li, Z. (2009). Capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Metals, 28(3), 231–236.

    Article  CAS  Google Scholar 

  • Wang, J. A., Limas-Ballesteros, R., Lόpez, T., Moreno, A., Gόmez, R., Novaro, O., & Bokhimi, X. (2001). Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. Journal of Physical Chemistry, B, 105, 9692–9698.

    Article  CAS  Google Scholar 

  • Wang, K. H., Hsick, Y. H., & Chan, L. J. (1998). The heterogeneous photocatalytic degradation, intermediates and mineralization for aqueous solution of cresols and nitrophenols. Journal of Hazardous Materials, 59, 251–260.

    Article  CAS  Google Scholar 

  • Wang, K.-H., Hsieh, Y.-H., Chou, M.-Y., & Chang, C.-Y. (1999a). Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspension in aqueous solution. Applied B: Catalysis B: Environmental, 21, 1–8.

    Article  Google Scholar 

  • Wang, L., Lu, F., & Meng, F. (2012). Synthesis and photocatalytic activity of TiOx powders with different oxygen defects. International Journal of Photoenergy, Article ID 208987, 7 pp, doi:10.1155/2012/208987

  • Wang, W., Dai, J., Tang, J., Jiang, D.-T., Chen, Y., Fang, J., He, J., Zhou, W., & Spinu, L. (2003). Magnetic properties of Fe-doped rutile. Journal of Superconductivity: Incorporating Novel Magnetism, 16, 155–157.

    Article  CAS  Google Scholar 

  • Wang, X. H., Li, J.-G., Kamiyama, H., Moriyoshi, Y., & Ishigaki, T. (2006). Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO2 nanopowders under UV and visible light irradiation. Journal of Physical Chemistry B, 110(13), 6804–6809.

    Article  CAS  Google Scholar 

  • Wang, Y., Cheng, H., Hao, Y., Ma, J., Li, W., & Cai, S. (1999b). Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles. Journal of Materials Science, 34, 3721–3729.

    Article  CAS  Google Scholar 

  • Wang, Z., & Kutal, C. (1995). Photocatalytic mineralization of 2,4,6 trinitrotoluene in aqueous suspensions of titanium dioxide. Chemosphere, 30, 1125–1136.

    Article  CAS  Google Scholar 

  • Ward, D. A., & Ko, E. I. (1995). Preparing catalytic materials by the sol–gel method. Industrial and Engineering Chemistry Research, 34, 421–433.

    Article  CAS  Google Scholar 

  • Watanabe, T., Kitamura, A., Kojima, E., Nakayama, C., Hashimoto, K., & Fujishima, A. (1993). Photocatalytic activity of TiO2 thin film under room light. In D. F. Ollis & H. Al-Ekabi (Eds.), Photocatalytic purification and treatment of water and air (pp. 747–751). Amsterdam: Elsevier.

    Google Scholar 

  • Webb, P. A., & Orr, C. (1997). Analytical methods in fine particle technology (p. 301). Norcross, GA: Micromeritics Instrument Corp.

    Google Scholar 

  • Wei, T. Y., Yang, Y. Y., & Wan, C. C. (1992). Kinetics of photocatalytic oxidation of phenols on TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 69, 241–249.

    Article  CAS  Google Scholar 

  • Westin, G., Jansson, K., Pohl, A., & Leideborg, M. (2004). All alcoxide sol–gel route to CoO-TiO2 nano-powders. Journal of Sol–gel, Science and Technology, 31, 25–29.

    Article  CAS  Google Scholar 

  • Wetchakun, N., Phanichphant, S., Chiang, K., & Amal, R. (2007). Effects of transition metal ion doping on the photocatalytic activity of TiO2. International Congress on Particle Technology, Nuremberg, Germany, 2729.3.2007, pp. 11–17.

  • Wilska, S. (1954). An X-ray diffraction study to determine the effect of the method of preparation upon crystal structure of TiO2. Acta Chemica Scandinavica, 8(10), 1796–1801.

    Article  CAS  Google Scholar 

  • Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic carbon-nanotube-TiO2 composites. Advanced Materials, 21, 2233–2239.

    Article  CAS  Google Scholar 

  • Wright, J. D., & Sommerdijk, N. A. J. M. (2001). Sol–gel materials – chemistry and applications. Amsterdam: Gordon & Breach.

    Google Scholar 

  • Yamalkav, A. A., Bhatkhande, D. S., Pangarkov, V. G., & Beenackers, A. A. C. M. (2001). Solar assisted photocatalytic degradation of phenol. Journal of Chemical Technology and Biotechnology, 76, 363–370.

    Article  Google Scholar 

  • Yoshida, N., & Watanabe, T. (2005). Sol–gel processed photocatalytic titania films. In S. Sakka (Ed.), Handbook of sol–gel science and technology – processing characterization and applications (Applications of solgel technology, Vol. 3, pp. 355–383). New York: Kluwer Academic Publishers.

    Google Scholar 

  • Yu, J., Xiang, Q., & Zhao, M. (2009). Preparation, characterization and visible light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Applied Catalysis B: Environment, 90, 595–602.

    Article  CAS  Google Scholar 

  • Yu, J. G., Wang, G. H., Cheng, B., & Zhou, M. (2007). Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B-Environmental, 69, 171–180.

    Article  CAS  Google Scholar 

  • Yu, J.-G., Su, Y.-R., Cheng, B., & Zhou, M.-G. (2006). Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. Journal of Molecular Catalysis A: Chemical, 258, 104–112.

    Article  CAS  Google Scholar 

  • Yuan, S., Sheng, Q., Zhang, J., Chen, F., Anpo, M., & Dai, W. (2006). Synthesis of Pd nanoparticles in La-doped mesoporous titania with polycrystalline framework. Catalysis Letters, 107, 19–24.

    Article  CAS  Google Scholar 

  • Zaleska, A. (2008). Doped-TiO2: a review. Recent Patents on Engineering, 2, 157–164.

    Article  CAS  Google Scholar 

  • Zhang, L., Macyk, W., Lange, C., Maier, W. F., Antonius, C., Meissner, D., & Kisch, H. (2000). Visible-light detoxification and charge generation by transition metal chloride modified titania. Chemistry - A European Journal, 6, 379–384.

    Article  Google Scholar 

  • Zhao, B., Mele, G., Pio, I., Li, J., Palmisano, L., & Vasapollo, G. (2010). Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst. Journal of Hazardous Materials, 176, 569–574.

    Article  CAS  Google Scholar 

  • Zhang, D. (2011). Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. Journal of Sol–Gel, Science and Technology, 58, 312–318.

    Article  CAS  Google Scholar 

  • Zhang, P., Liu, B., Yin, S., Wang, Y., Petrykin, V., Kakihana, M., & Sato, T. (2009). Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method. Materials Chemistry and Physics, 116(1), 269–272.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xiong, G., Yao, N., Yang, W., & Fu, X. (2001). Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catalysis Today, 68, 89–95.

    Article  CAS  Google Scholar 

  • Zhu, S., Liu, W., Fan, C., & Li, Y. (2005a). Mössbauer study of nano-TiO2 doped with Fe. Hyperfine Interactions, 165, 273–278.

    Article  Google Scholar 

  • Zhu, X., Yuan, C., Bao, Y., Yang, J., & Wu, Y. (2005b). Photocatalytic degradation of pesticide pyridaben on TiO2 particles. Journal of Molecular Catalysis: Chemical, 229, 95–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI– UEFISCDI, project number PN-II-PT-PCCA-2011-3.1-0031.

Author contribution

All the authors of this present paper have equal contribution to its elaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Crişan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Răileanu, M., Crişan, M., Niţoi, I. et al. TiO2-based Nanomaterials with Photocatalytic Properties for the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey. Water Air Soil Pollut 224, 1548 (2013). https://doi.org/10.1007/s11270-013-1548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1548-7

Keywords

Navigation