Skip to main content
Log in

Synthesis of a Novel Hydrogel Nanocomposite Coated on Cotton Fabric for Water–Oil Separation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new cotton-based hydrogel nanocomposite was successfully prepared by free radical graft copolymerization of acrylamide (AAm) and acrylonitrile (AN) onto fabric followed by insertion of Ag nanoparticles. Ammonium persulfate (APS) was used as an initiator in the presence of a cross-linker, methylene bisacrylamide (MBA). Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy were employed to confirm the structure of the hydrogel nanocomposite. Initially, the affecting variables onto graft polymerization (i.e. AAm, AN, MBA, APS, and silver concentrations) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The resulted nanocomposite exhibits superhydrophilic and superhydrophobic properties. Therefore, the grafted fabric selectively separated water from oil/water mixtures with high separation efficiency. The influences of filter type, percentage of coated hydrogel on cotton, presence of silver nanoparticles, pH of solution, extracted oil type, as well as hydrogel nanocomposite on the separation efficiency of filters were also studied in detail. Moreover, pH of zero point charge (pHzpc) of the hydrogel nanocomposite was determined by alkaline titration method, and a value of 6.5 was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmed, E. M., & Aggor, F. S. (2010). Swelling kinetic study and characterization of crosslinked hydrogels containing silver nanoparticles. Journal of Applied Polymer Science, 117, 2168–2174.

    Article  CAS  Google Scholar 

  • Babic, M. B., Milonjic, M. J., Polovina, B. V., & Kaludierovic, B. V. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37, 477–481.

    Article  CAS  Google Scholar 

  • Babu, V. R., Kim, C., Kim, S., Ahn, C., & Lee, Y. (2010). Development of semi-interpenetrating carbohydrate polymeric hydrogels embedded silver nanoparticles and its facile studies on E. coli. Carbohydrate Polymers, 81, 196–202.

    Article  CAS  Google Scholar 

  • Branrup, J., & Immergut, E. H. (1989). Polymer handbook (3rd ed.). New York: Wiley.

    Google Scholar 

  • Buchholz, F. L., & Graham, A. T. (1997). Modern superabsorbent polymer technology. New York: Wiley.

    Google Scholar 

  • Calcagnile, P., Fragouli, D., Bayer, I. S., Anyfantis, G. C., Martiradonna, L., Cozzoli, P. D., Cingolani, R., & Athanassiou, A. (2012). Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano, 6, 5413–5419.

    Article  CAS  Google Scholar 

  • Cervin, N. T., Aulin, C., Larsson, P. T., & Wagberg, L. (2012). Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose, 19, 401–410.

    Article  CAS  Google Scholar 

  • Chen, J., & Zhao, Y. (2000). Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. Journal of Applied Polymer Science, 75, 808–814.

    Article  CAS  Google Scholar 

  • Choi, W., Tuteja, A., Chhatre, S., Mabry, J. M., Cohen, R. E., & McKinley, G. H. (2009). Fabrics with tunable oleophobicity. Advanced Materials, 21, 2190–2195.

    Article  CAS  Google Scholar 

  • Chu, Y., & Pan, Q. M. (2012). Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Applied Matererials Interfaces, 4, 2420–2425.

    Article  CAS  Google Scholar 

  • Coles, C. A., & Yong, R. N. (2002). Aspects of kaolinite characterization and retention of Pb and Cd. Applied Clay Sciences, 22, 39–45.

    Article  CAS  Google Scholar 

  • Gao, D. (2014). Superoleophobic and superhydrophilic fabric filters for rapid water–oil separation. US patent: 8,695,810 B2.

  • Gui, X. C., Wei, J. Q., Wang, K. L., Cao, A. Y., Zhu, H. W., Jia, Y., et al. (2010). Carbon nanotube sponges. Advanced Materials, 22, 617–621.

    Article  CAS  Google Scholar 

  • Gupta, K. C., & Khandekar, K. (2006). Ceric(IV) ion-induced graft copolymerization of acrylamide and ethyl acrylate onto cellulose. Polymer International, 55, 139–150.

    Article  CAS  Google Scholar 

  • Hebeish, A., Hashem, M., Abd El-Hady, M. M., & Sharaf, S. (2013). Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers, 92, 407–413.

    Article  CAS  Google Scholar 

  • Hosseinzadeh, H. (2010). Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel. Journal of Chemical Science, 122, 651–659.

    Article  CAS  Google Scholar 

  • Howarter, J. A., & Youngblood, J. P. (2009). Amphiphile grafted membranes for the separation of oil-in-water dispersions. Journal of Colloid and Interface Science, 329, 127–132.

    Article  CAS  Google Scholar 

  • Howarter, J. A., Genson, K. L., & Youngblood, J. P. (2011). Wetting behavior of oleophobic polymer coatings synthesized from fluorosurfactant-macromers. ACS Applied Materials Interfaces, 3, 2022–2030.

    Article  CAS  Google Scholar 

  • Kwon, G., Kota, A. K., Li, Y. X., Sohani, A., Mabry, J. M., & Tuteja, A. (2012). On-demand separation of oil–water mixtures. Advanced Materials, 24, 3666–3671.

    Article  CAS  Google Scholar 

  • Lin, J., Shang, Y., Ding, B., Yang, J., Yu, J., & Al-Deyab, S. S. (2012). Nanoporous polystyrene fibers for oil spill cleanup. Materials Pollution Bulletin, 64, 347–352.

    Article  CAS  Google Scholar 

  • Liu, M. J., Zheng, Y. M., Zhai, J., & Jiang, L. (2010). Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Accounts of Chemical Research, 43, 368–377.

    Article  CAS  Google Scholar 

  • Ngarmkam, W., Sirisathitkul, C., & Phalakornkule, C. (2011). Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME. Journal of Environmental Management, 92, 472–479.

    Article  CAS  Google Scholar 

  • Niu, Z., Chen, J., Hng, H. H., Ma, J., & Chen, X. (2012). A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 24, 4144–4150.

    Article  CAS  Google Scholar 

  • Okawara, S., Ishikawa, T., & Ogawa, K. (2007). Applicability of a miniaturized micro-separator/classifier to oil–water separation. Chemical Engineering & Technology, 30, 316–321.

    Article  Google Scholar 

  • Ono, T., Sugimoto, T., Shinkai, S., & Sada, K. (2007). Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nature Materials, 6, 429–433.

    Article  CAS  Google Scholar 

  • Pourjavadi, A., Amini-Fazl, M. S., & Hosseinzadeh, H. (2005). Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide, as a novel biopolymer-based superabsorbent hydrogel with pH-responsiveness properties. Macromolecular Research, 13, 45–54.

    Article  CAS  Google Scholar 

  • Rao, A. V., Hegde, N. D., & Hirashima, H. (2007). Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. Journal of Colloid and Interface Science, 305, 124–132.

    Article  Google Scholar 

  • Saber-Samandari, S., Gazi, M., & Yilmaz, E. (2013a). Synthesis and characterization of chitosan-graft-poly (N-allyl maleamic acid) hydrogel membrane. Water, Air, & Soil Pollution, 224, 1624–1635.

    Article  Google Scholar 

  • Saber-Samandari, S., Saber-Samandari, S., & Gazi, M. (2013b). Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions. Reactive & Functional Polymers, 73, 1523–1530.

    Article  CAS  Google Scholar 

  • Wang, S., Li, M., & Lu, Q. (2010). Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Applied Materials & Interfaces, 2, 677–683.

    Article  CAS  Google Scholar 

  • Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L., & Jiang, L. (2011). A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 23, 4270–4273.

    Article  CAS  Google Scholar 

  • Xue, Z., Cao, Y., Liu, N., Feng, L., & Jiang, L. (2014). Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2, 2445–2460.

    Article  CAS  Google Scholar 

  • Yang, J., Zhang, Z., Xu, X., Zhu, X., Men, X., & Zhou, X. (2012). Superhydrophilic-superoleophobic coatings. Journal of Materials Chemistry, 22, 2834–2837.

    Article  CAS  Google Scholar 

  • Yao, X., Song, Y. L., & Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23, 719–734.

    Article  CAS  Google Scholar 

  • Yuan, J. K., Liu, X. G., Akbulut, O., Hu, J. Q., Suib, S. L., Kong, J., & Stellacci, F. (2008). Superwetting nanowire membranes for selective absorption. Nature Nanotechnology, 3, 332–336.

    Article  CAS  Google Scholar 

  • Zhang, J., & Seeger, S. (2011). Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 21, 4699–4704.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Wei, S., Liu, F. J., Du, Y. C., Liu, S., Ji, Y. Y., Yokoi, T., Tatsumi, T., & Xiao, F. S. (2009). Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today, 4, 35–142.

    Google Scholar 

  • Zhang, L., Zhang, Z., & Wang, P. (2012). Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Materials, 4, e8.

    Article  Google Scholar 

  • Zhu, Q., Tao, F., & Pan, Q. (2010). Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3/C nanoparticles under magnetic field. ACS Applied Materials Interfaces, 2, 3141–3146.

    Article  CAS  Google Scholar 

  • Zhu, Q., Pan, Q., & Liu, F. (2011). Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. Journal of Physical Chemistry C, 115, 17464–17470.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Iran National Science Foundation (INSF) for Scientific Research Project (Project No. 91004263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, H., Mohammadi, S. Synthesis of a Novel Hydrogel Nanocomposite Coated on Cotton Fabric for Water–Oil Separation. Water Air Soil Pollut 225, 2115 (2014). https://doi.org/10.1007/s11270-014-2115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2115-6

Keywords

Navigation