Skip to main content
Log in

Demonstrating a New BiOCl0.875Br0.125 Photocatalyst to Degrade Pharmaceuticals Under Solar Irradiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study demonstrates the potential of a new BiOCl0.875Br0.125 photocatalyst to degrade pharmaceuticals in water (i.e., carbamazepine (CBZ), ibuprofen (IBF), bezafibrate (BZF), and propranolol (PPL)), under simulated solar irradiation. Different parameters were examined through their influence on CBZ degradation. Increasing the catalyst concentration up to 500 mg/L increased CBZ degradation rate; however, above 500 mg/L, CBZ degradation rate was slightly reduced, most likely due to the catalyst’s light-screening effect at high concentrations. Increasing the pH of the tested solution from 4 to 9 decreased the degree of CBZ adsorption to the catalyst and consequently its degradation rate. Quantum yield for CBZ degradation was found to be 0.75 ± 0.05 % using an integrating sphere for absorbance measurements to correctly account for scattering of light by the suspended catalyst. Degradation rates of all examined compounds (at pH 7) followed the order PPL > BZF > IBF > CBZ (highest rate for PPL). Interestingly, PPL was least adsorbed to the catalyst, implying that adsorption is not always mandatory for efficient degradation with BiOCl0.875Br0.125. Different adsorption mechanisms were hypothesized for the different pharmaceuticals, including hydrophobic attraction for the neutrally charged CBZ and ion exchange for the negatively charged IBF and BZF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achilleos, A., Hapeshi, E., Xekoukoulotakis, N. P., Mantzavinos, D., & Fatta-Kassinos, D. (2010). Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chemical Engineering Journal, 161, 53–59.

    Article  CAS  Google Scholar 

  • Canonica, S., & Laubscher, H. U. (2008). Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants. Photochemical and Photobiological Sciences, 7, 547–551.

    Article  CAS  Google Scholar 

  • Chen, Y., Hu, C., Hu, X., & Qu, J. (2009). Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environmental Science and Technology, 43, 2760–2765.

    Article  CAS  Google Scholar 

  • Cheng, Y. H., Huang, Y. Z., Kanhere, P. D., Subramaniam, V. P., Gong, D. G., Zhang, S., Highfield, J., Schreyer, M. K., & Chen, Z. (2011). Dual-phase titanate/anatase with nitrogen doping for enhanced degradation of organic dye under visible light. Chemistry--A European Journal, 17, 2575–2578.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38, 947–954.

    Article  CAS  Google Scholar 

  • Dalrymple, R. M., Carfagno, A. K., & Sharpless, C. M. (2010). Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental Science and Technology, 44, 5824–5829.

    Article  CAS  Google Scholar 

  • Doll, T. E., & Frimmel, F. H. (2005). Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catalysis Today, 101, 195–202.

    Article  CAS  Google Scholar 

  • Du, Y., & Rabani, J. (2004). Determination of quantum yields in two-dimensional scattering systems. Journal of Photochemistry and Photobiology A, 162, 575–578.

    Article  CAS  Google Scholar 

  • Feng, Y. C., Li, L., Li, J. W., Wang, J. F., & Liu, L. (2011). Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. Journal of Hazardous Materials, 192, 538–544.

    Article  CAS  Google Scholar 

  • Fu, H. B., Pan, C. S., Yao, W. Q., & Zhu, Y. F. (2005). Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. Journal of Physical Chemistry B, 109, 22432–22439.

    Article  CAS  Google Scholar 

  • Gnayem, H., & Sasson, Y. (2013). Hierarchical nanostructured 3D flowerlike BiOClxBr1-x semiconductors with exceptional visible light photocatalytic activity. ACS Catalysis, 3, 186–191.

    Article  CAS  Google Scholar 

  • Hapeshi, E., Achilleos, A., Vasquez, M. I., Michael, C., Xekoukoulotakis, N. P., Mantzavinos, D., & Kassinos, D. (2010). Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Research, 44, 1737–1746.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Huber, M. M., Canonica, S., Park, G. Y., & von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science and Technology, 37, 1016–1024.

    Article  CAS  Google Scholar 

  • Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C. S., Ternes, T. A., Thomsen, A., & Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Research, 40, 1686–1696.

    Article  CAS  Google Scholar 

  • Lester, Y., Mamane, H., & Avisar, D. (2012). Enhanced removal of micropollutants from groundwater, using pH modification coupled with photolysis. Water, Air, and Soil Pollution, 223, 1639–1647.

    Article  CAS  Google Scholar 

  • Li, T. B., Chen, G., Zhou, C., Shen, Z. Y., Jin, R. C., & Sun, J. X. (2011). New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions, 40, 6751–6758.

    Article  CAS  Google Scholar 

  • Lin, C. F., Wu, C. H., & Onn, Z. N. (2008). Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. Journal of Hazardous Materials, 154, 1033–1039.

    Article  CAS  Google Scholar 

  • Mamane, H., Ducoste, J. J., & Linden, K. G. (2006). Effect of particles on ultraviolet light penetration in natural and engineered systems. Applied Optics, 45, 1844–1856.

    Article  CAS  Google Scholar 

  • Marinas, A., Guillard, C., Marinas, J. M., Fernandez-Alba, A., Aguera, A., & Herrmann, J. M. (2001). Photocatalytic degradation of pesticide-acaricide formetanate in aqueous suspension of TiO2. Applied Catalysis B: Environmental, 34, 241–252.

    Article  CAS  Google Scholar 

  • Martinez, C., Canle, M., Fernandez, M. I., Santaballa, J. A., & Faria, J. (2011). Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Applied Catalysis B: Environmental, 102, 563–571.

    Article  CAS  Google Scholar 

  • Miranda-Garcia, N., Suarez, S., Sanchez, B., Coronado, J. M., Malato, S., & Maldonado, M. I. (2011). Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 103, 294–301.

    Article  CAS  Google Scholar 

  • Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Materials, 89, 303–317.

    Article  CAS  Google Scholar 

  • Reyes, C., Fernandez, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., & Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A, 184, 141–146.

    Article  CAS  Google Scholar 

  • Rincon, A. G., & Pulgarin, C. (2004). Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental, 49, 99–112.

    Article  CAS  Google Scholar 

  • Serpone, N. (1997). Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A, 104, 1–12.

    Article  CAS  Google Scholar 

  • Shenawi-Khalil, S., Uvarov, V., Kritsman, Y., Menes, E., Popov, I., & Sasson, Y. (2011). A new family of BiO(ClxBr1-x) visible light sensitive photocatalysts. Catalysis Communications, 12, 1136–1141.

    Article  CAS  Google Scholar 

  • Sjogren, J. C., & Sierka, R. A. (1994). Inactivation of phage MS2 by iron-aided titanium-dioxide photocatalysis. Applied and Environmental Microbiology, 60, 344–347.

    CAS  Google Scholar 

  • So, C. M., Cheng, M. Y., Yu, J. C., & Wong, P. K. (2002). Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere, 46, 905–912.

    Article  CAS  Google Scholar 

  • Su, W. Y., Wang, J. A., Huang, Y. X., Wang, W. J., Wu, L., Wang, X. X., & Liu, P. (2010). Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Materialia, 62, 345–348.

    Article  CAS  Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.

    Article  CAS  Google Scholar 

  • Trenholm, R. A., Vanderford, B. J., Holady, J. C., Rexing, D. J., & Snyder, S. A. (2006). Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry. Chemosphere, 65, 1990–1998.

    Article  CAS  Google Scholar 

  • Wang, W. D., Huang, F. Q., & Lin, X. P. (2007). xBiOI(1-x)BiOCl as efficient visible-light-driven photocatalysts. Scripta Materialia, 56, 669–672.

    Article  CAS  Google Scholar 

  • Wang, W. D., Huang, F. Q., Lin, X. P., & Yang, J. H. (2008). Visible-fight-responsive photocatalysts xBiOBr-(1-x)BiOI. Catalysis Communications, 9, 8–12.

    Article  CAS  Google Scholar 

  • Wang, C. Y., Zhang, H., Li, F., & Zhu, L. Y. (2010). Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. Environmental Science and Technology, 44, 6843–6848.

    Article  CAS  Google Scholar 

  • Wong, C. L., Tan, Y. N., & Mohamed, A. R. (2011). A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. Journal of Environmental Management, 92, 1669–1680.

    Article  CAS  Google Scholar 

  • Xekoukoulotakis, N. P., Drosou, C., Brebou, C., Chatzisymeon, E., Hapeshi, E., Fatta-Kassinos, D., & Mantzavinos, D. (2011). Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catalysis Today, 161, 163–168.

    Article  CAS  Google Scholar 

  • Yang, L., Yu, L. E., & Ray, M. B. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 42, 3480–3488.

    Article  CAS  Google Scholar 

  • Yu, S., Zhang, G., Gao, Y., & Huang, B. (2011). Single-crystalline Bi5O7NO3 nanofibers: hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties. Journal of Colloid and Interface Science, 354, 322–330.

    Article  CAS  Google Scholar 

  • Zhang, K. L., Liu, C. M., Huang, F. Q., Zheng, C., & Wang, W. D. (2006). Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68, 125–129.

    Article  CAS  Google Scholar 

  • Zhang, G., Li, M., Yu, S., Zhang, S., Huang, B., & Yu, J. (2010). Synthesis of nanometer-size Bi3TaO7 and its visible-light photocatalytic activity for the degradation of a 4BS dye. Journal of Colloid and Interface Science, 345, 467–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Israeli Water Authority (Grant no. 0605414461) and by the Israel Science Foundation (Grant 207/12). We gratefully acknowledge Hila Nisim-Nisimov for her work and the editorial reviews by Liz Taylor-Edmonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaal Lester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, Y., Avisar, D., Gnayem, H. et al. Demonstrating a New BiOCl0.875Br0.125 Photocatalyst to Degrade Pharmaceuticals Under Solar Irradiation. Water Air Soil Pollut 225, 2132 (2014). https://doi.org/10.1007/s11270-014-2132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2132-5

Keywords

Navigation