Skip to main content
Log in

Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To develop an efficient adsorbent for humic acid, the present study represents the first attempt to investigate the capability of zeolitic imidazole frameworks to remove humic acid from water. Zeolitic imidazole framework-8 (ZIF-8) is particularly selected as a prototype ZIF to adsorb humic acid owing to its high stability in aqueous solutions. ZIF-8 was synthesized and characterized using scanning electronic microscopy (SEM), powder X-ray diffraction pattern (PXRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analyzer (TGA) and then used to adsorb humic acid under various conditions. The structure of ZIF-8 was found to remain intact after the exposure to humic acid in water. Factors affecting the adsorption were examined, including solid-to-liquid ratio, mixing time, temperature, pH, presence of salt, and surfactants. The adsorption capacity of ZIF-8 was found to be much higher than that of activated carbon, fly ash, zeolites, graphite, etc., showing its promising potential for removal of humic acid. The adsorption mechanism could be attributed to the electrostatic interaction between the positive surface of ZIF-8 and the acidic sites of humic acid, as well as the π–π stacking interaction between imidazole of ZIF-8 and benzene rings of humic acid. The humic acid adsorption to ZIF-8 could be enhanced in the acidic conditions, and the adsorption process remained highly stable in the solutions of a wide range of NaCl concentrations. ZIF-8 can be also regenerated by simple ethanol-washing process and reused for humic acid adsorption. These features enable ZIF-8 to be an efficient and stable adsorbent to remove humic acid from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adak, A., Pal, A., & Bandyopadhyay, M. (2005). Spectrophotometric determination of anionic surfactants in wastewater using acridine orange. Indian Journal of Chemical Technology, 12, 145–148.

    CAS  Google Scholar 

  • Ahmad, R., Wong-Foy, A. G., & Matzger, A. J. (2009). Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir, 25(20), 11977–11979. doi:10.1021/la902276a.

    Article  CAS  Google Scholar 

  • Ahmed, A., Forster, M., Clowes, R., Bradshaw, D., Myers, P., & Zhang, H. (2013). Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. Journal of Materials Chemistry A, 1(10), 3276–3286. doi:10.1039/C2TA01125E.

    Article  CAS  Google Scholar 

  • Arrhenius, S. A. (1889). Über die dissociationswärme und den einflusß der temperatur auf den dissociationsgrad der elektrolyte. Zeitschrift für Physikalische Chemie, 4, 96–116.

    Google Scholar 

  • Bai, R., & Zhang, X. (2001). Polypyrrole-coated granules for humic acid removal. Journal of Colloid and Interface Science, 243(1), 52–60. doi:10.1006/jcis.2001.7843.

    Article  CAS  Google Scholar 

  • Brum, M. C., & Oliveira, J. F. (2007). Removal of humic acid from water by precipitate flotation using cationic surfactants. Minerals Engineering, 20(9), 945–949. doi:10.1016/j.mineng.2007.03.004.

    Article  CAS  Google Scholar 

  • Chen, J., Cai, Y., Clark, M., & Yu, Y. (2013). Equilibrium and kinetic studies of phosphate removal from solution onto a hydrothermally modified oyster shell material. PLoS ONE, 8(4), e60243. doi:10.1371/journal.pone.0060243.

    Article  CAS  Google Scholar 

  • Cheng, Z., Liu, X., Han, M., & Ma, W. (2010). Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution. Journal of Hazardous Materials, 182(1–3), 408–415. doi:10.1016/j.jhazmat.2010.06.048.

    Article  CAS  Google Scholar 

  • Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98(15), 2897–2904. doi:10.1016/j.biortech.2006.09.045.

    Article  CAS  Google Scholar 

  • Corma, A., García, H., Llabrés, I., & Xamena, F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655. doi:10.1021/cr9003924.

    Article  CAS  Google Scholar 

  • Cravillon, J., Schroder, C. A., Bux, H., Rothkirch, A., Caro, J., & Wiebcke, M. (2012). Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 14(2), 492–498. doi:10.1039/C1CE06002C.

    Article  CAS  Google Scholar 

  • Daifullah, A. A. M., Girgis, B. S., & Gad, H. M. H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235(1–3), 1–10. doi:10.1016/j.colsurfa.2003.12.020.

    Article  CAS  Google Scholar 

  • Domany, Z., Galambos, I., Vatai, G., & Bekassy-Molnar, E. (2002). Humic substances removal from drinking water by membrane filtration. Desalination, 145(1–3), 333–337. doi:10.1016/S0011-9164(02)00432-0.

    Article  CAS  Google Scholar 

  • Doulia, D., Leodopoulos, C., Gimouhopoulos, K., & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 340(2), 131–141. doi:10.1016/j.jcis.2009.07.028.

    Article  CAS  Google Scholar 

  • Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 60(2), 235–241. doi:10.1021/cr60204a006.

    Article  CAS  Google Scholar 

  • El-Hankari, S., Huo, J., Ahmed, A., Zhang, H., & Bradshaw, D. (2014). Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. Journal of Materials Chemistry A, 2, 13479–13485. doi:10.1039/C4TA02568G.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal organic framework catalysis: Quo vadis? ACS Catalysis, 361–378, doi:10.1021/cs400959k.

  • Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022–2027. doi:10.1021/es0616534.

    Article  CAS  Google Scholar 

  • Gross, A. F., Sherman, E., & Vajo, J. J. (2012). Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions, 41(18), 5458–5460. doi:10.1039/C2DT30174A.

    Article  CAS  Google Scholar 

  • Han, R., Han, P., Cai, Z., Zhao, Z., & Tang, M. (2008). Kinetics and isotherms of Neutral Red adsorption on peanut husk. Journal of Environmental Sciences, 20(9), 1035–1041. doi:10.1016/S1001-0742(08)62146-4.

    Article  CAS  Google Scholar 

  • Hartono, T., Wang, S., Ma, Q., & Zhu, Z. (2009). Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science, 333(1), 114–119. doi:10.1016/j.jcis.2009.02.005.

    Article  CAS  Google Scholar 

  • Hasan, Z., & Jhung, S. H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 283, 329–339. doi:10.1016/j.jhazmat.2014.09.046.

    Article  CAS  Google Scholar 

  • He, M., Yao, J., Liu, Q., Wang, K., Chen, F., & Wang, H. (2014). Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 184, 55–60. doi:10.1016/j.micromeso.2013.10.003.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  • Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., et al. (2010). Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 9(2), 172–178, doi:10.1038/nmat2608, http://www.nature.com/nmat/journal/v9/n2/abs/nmat2608.html#supplementary-information.

  • Hu, Y., Kazemian, H., Rohani, S., Huang, Y., & Song, Y. (2011). In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 47(47), 12694–12696. doi:10.1039/C1CC15525C.

    Article  CAS  Google Scholar 

  • Huat, B. B. K., Gue, S. S., & Ali, F. H. (2004). Tropical residual soils engineering. CRC Press, 377-403

  • Hutson, N., & Yang, R. (1997). Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption, 3(3), 189–195. doi:10.1007/BF01650130.

    Article  CAS  Google Scholar 

  • Hwang, L.-L., Chen, J.-C., & Wey, M.-Y. (2013). The properties and filtration efficiency of activated carbon polymer composite membranes for the removal of humic acid. Desalination, 313, 166–175. doi:10.1016/j.desal.2012.12.019.

    Article  CAS  Google Scholar 

  • Imyim, A., & Prapalimrungsi, E. (2010). Humic acids removal from water by aminopropyl functionalized rice husk ash. Journal of Hazardous Materials, 184(1–3), 775–781. doi:10.1016/j.jhazmat.2010.08.108.

    Article  CAS  Google Scholar 

  • Janiak, C., & Vieth, J. K. (2010). MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34(11), 2366–2388. doi:10.1039/c0nj00275e.

    Article  CAS  Google Scholar 

  • Jiang, J.-Q., Yang, C.-X., & Yan, X.-P. (2013). Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Applied Materials & Interfaces, 5(19), 9837–9842. doi:10.1021/am403079n.

    Article  CAS  Google Scholar 

  • Jones, M. N., & Bryan, N. D. (1998). Colloidal properties of humic substances. Advances in Colloid and Interface Science, 78(1), 1–48. doi:10.1016/S0001-8686(98)00058-X.

    Article  CAS  Google Scholar 

  • Jung, B. K., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chemical Engineering Journal, 234, 99–105. doi:10.1016/j.cej.2013.08.110.

    Article  CAS  Google Scholar 

  • Kang, X.-Z., Song, Z.-W., Shi, Q., & Dong, J.-X. (2013). Utilization of zeolite imidazolate framework as an adsorbent for the removal of dye from aqueous solution. Asian Journal of Chemistry, 25(15), 8324–8328.

    Article  CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244–245, 444–456. doi:10.1016/j.jhazmat.2012.11.011.

    Article  Google Scholar 

  • Khan, N. A., Jung, B. K., Hasan, Z., & Jhung, S. H. (2015). Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. Journal of Hazardous Materials, 282, 194–200. doi:10.1016/j.jhazmat.2014.03.047.

    Article  CAS  Google Scholar 

  • Khayet, M., & Mengual, J. I. (2004). Effect of salt concentration during the treatment of humic acid solutions by membrane distillation. Desalination, 168, 373–381. doi:10.1016/j.desal.2004.07.023.

    Article  CAS  Google Scholar 

  • Kim, H.-C., Park, S.-J., Lee, C.-G., Han, Y.-U., Park, J.-A., & Kim, S.-B. (2009). Humic acid removal from water by iron-coated sand: a column experiment. Environmental Engineering Research, 14(1), 41–47. doi:10.4491/eer.2009.14.1.41.

    Article  Google Scholar 

  • Koner, S., Pal, A., & Adak, A. (2010). Cationic surfactant adsorption on silica gel and its application for wastewater treatment. Desalination and Water Treatment, 22(1–3), 1–8. doi:10.5004/dwt.2010.1465.

    Article  CAS  Google Scholar 

  • Kosaka, J., Honda, C., & Izeki, A. (1961). Fractionation of humic acid by organic solvents. Soil Science and Plant Nutrition, 7(2), 48–53. doi:10.1080/00380768.1961.10430956.

    Article  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295. doi:10.1021/ja02268a002.

    Article  CAS  Google Scholar 

  • Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. doi:10.1039/B807080F.

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504. doi:10.1039/B802426J.

    Article  CAS  Google Scholar 

  • Li, J.-R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H.-K., et al. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15–16), 1791–1823. doi:10.1016/j.ccr.2011.02.012.

    Article  CAS  Google Scholar 

  • Liao, X.-P., & Shi, B. (2005). Adsorption of fluoride on zirconium(IV)-impregnated collagen fiber. Environmental Science & Technology, 39(12), 4628–4632. doi:10.1021/es0479944.

    Article  CAS  Google Scholar 

  • Lin, J., Zhan, Y., & Zhu, Z. (2011). Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 9–16. doi:10.1016/j.colsurfa.2011.02.044.

    Article  CAS  Google Scholar 

  • Lowe, J., & Hossain, M. M. (2008). Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination, 218(1–3), 343–354. doi:10.1016/j.desal.2007.02.030.

    Article  CAS  Google Scholar 

  • Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44(5), 1489–1497. doi:10.1016/j.watres.2009.10.042.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of Congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61(4), 492–501. doi:10.1016/j.chemosphere.2005.03.065.

    Article  CAS  Google Scholar 

  • Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626–636. doi:10.1039/b511962f.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., & Musa, A. (1998). Adsorption of humic acid onto chitin and chitosan. Journal of Applied Polymer Science, 69(12), 2305–2310. doi:10.1002/(SICI)1097-4628(19980919)69:12<2305::AID-APP1>3.0.CO;2-C.

    Article  Google Scholar 

  • Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7), 2071–2073. doi:10.1039/C0CC05002D.

    Article  CAS  Google Scholar 

  • Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., et al. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191. doi:10.1073/pnas.0602439103.

    Article  CAS  Google Scholar 

  • Qiu, L.-G., Li, Z.-Q., Wu, Y., Wang, W., Xu, T., & Jiang, X. (2008). Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications (31), 3642–3644, doi:10.1039/B804126A.

  • Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater (organic pollutants—monitoring, risk and treatment).

  • Schäfer, A. I., Fane, A. G., & Waite, T. D. (2000). Fouling effects on rejection in the membrane filtration of natural waters. Desalination, 131(1–3), 215–224. doi:10.1016/S0011-9164(00)90020-1.

    Article  Google Scholar 

  • Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., & Schneider, R. (2014). Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 16(21), 4493–4500. doi:10.1039/C3CE42485E.

    Article  CAS  Google Scholar 

  • Stock, N., & Biswas, S. (2011). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 112(2), 933–969. doi:10.1021/cr200304e.

    Article  Google Scholar 

  • Stone, A. T., & Morgan, J. J. (1984). Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics. Environmental Science & Technology, 18(8), 617–624. doi:10.1021/es00126a010.

    Article  CAS  Google Scholar 

  • Subbiah, D., & Mishra, A. K. (2009). Humic acid–cetyltrimethylammonium bromide interaction: a fluorimetric study. Luminescence, 24(2), 84–89. doi:10.1002/bio.1069.

    Article  CAS  Google Scholar 

  • Tatsi, A. A., & Zouboulis, A. I. (2002). Production, composition and temporal variation of pollution parameters for sanitary landfill leachates. Advances in Environmental Research, 6, 207–219.

    Article  CAS  Google Scholar 

  • Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica U.R.S.S., 12, 327–356.

    CAS  Google Scholar 

  • Tsai, Y. P., Doong, R. A., Yang, J. C., Chuang, P. C., Chou, C. C., & Lin, J. W. (2013). Removal of humic acids in water by carbon nanotubes. Advanced Materials Research, 747, 221–224.

    Article  CAS  Google Scholar 

  • Wang, S., & Zhu, Z. H. (2007). Humic acid adsorption on fly ash and its derived unburned carbon. Journal of Colloid and Interface Science, 315(1), 41–46. doi:10.1016/j.jcis.2007.06.034.

    Article  CAS  Google Scholar 

  • Wang, M., Liao, L., Zhang, X., & Li, Z. (2012). Adsorption of low concentration humic acid from water by palygorskite. Applied Clay Science, 67–68, 164–168. doi:10.1016/j.clay.2011.09.012.

    Article  Google Scholar 

  • Wang, F., Yao, J., Chen, H., Yi, Z., & Xing, B. (2013). Sorption of humic acid to functionalized multi-walled carbon nanotubes. Environmental Pollution, 180, 1–6. doi:10.1016/j.envpol.2013.04.035.

    Article  Google Scholar 

  • Watanabe, A., & Kuwatsuka, S. (1992). Ethanol-soluble and insoluble fractions of humic substances in soil fulvic acids. Soil Science and Plant Nutrition, 38(3), 391–399. doi:10.1080/00380768.1992.10415071.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research, 35(3), 613–618. doi:10.1016/S0043-1354(00)00307-9.

    Article  CAS  Google Scholar 

  • Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2002). Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. Journal of Chemical Technology & Biotechnology, 77(11), 1269–1279. doi:10.1002/jctb.705.

    Article  CAS  Google Scholar 

  • Yao, J., Chen, R., Wang, K., & Wang, H. (2013). Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous and Mesoporous Materials, 165, 200–204. doi:10.1016/j.micromeso.2012.08.018.

    Article  CAS  Google Scholar 

  • Yoon, J. W., Jhung, S. H., Hwang, Y. K., Humphrey, S. M., Wood, P. T., & Chang, J. S. (2007). Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4- dicarboxylic acid. Advanced Materials, 19(14), 1830–1834. doi:10.1002/adma.200601983.

    Article  CAS  Google Scholar 

  • Yu, X., Zhang, G., Xie, C., Yu, Y., Cheng, T., & Zhou, Q. (2011). Equilibrium, kinetic, and thermodynamic studies of hazardous dye neutral red biosorption by spent corncob substrate. BioResources, 6(2), 936–949.

    CAS  Google Scholar 

  • Zouboulis, A. I., Jun, W., & Katsoyiannis, I. A. (2003). Removal of humic acids by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 231(1–3), 181–193. doi:10.1016/j.colsurfa.2003.09.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Resta Saphore for her assistance on the manuscript proofreading and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Yi Andrew Lin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KY.A., Chang, HA. Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8). Water Air Soil Pollut 226, 10 (2015). https://doi.org/10.1007/s11270-014-2280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2280-7

Keywords

Navigation